项目名称: 离子液体溶解甲烷机理及影响因素研究

项目编号: No.51304073

项目类型: 青年科学基金项目

立项/批准年度: 2014

项目学科: 矿业工程

项目作者: 王兰云

作者单位: 河南理工大学

项目金额: 25万元

中文摘要: 甲烷富集技术是目前矿井低浓度瓦斯高效利用的主要瓶颈之一。目前溶剂吸收法回收甲烷所用溶剂多具有高挥发性,易混合于甲烷中,且污染空气。基于离子液体的低挥发性和对气体的选择溶解性,申请人提出利用离子液体溶解甲烷,以达到富集甲烷气体的目的。本项目将通过石英晶体微天平实验测试部分阳离子对称性较高的离子液体对甲烷气体的溶解度;基于基团贡献法和分子动力学模型,建立甲烷在离子液体中溶解的预测模型,以此分析温度、压力、阴阳离子影响该溶解过程的规律;利用红外光谱仪和核磁共振仪测试通入甲烷前后不同离子液体的化学结构变化,结合量子化学计算和分子动力学模拟揭示离子液体溶解甲烷的化学反应路径和反应机理;最后,总结能够高效溶解甲烷的离子液体的结构特征,以及该离子液体溶解甲烷的有利条件。本研究将为离子液体在矿井低浓度瓦斯的富集及瓦斯气体分离技术方面的应用提供理论基础。

中文关键词: 离子液体;溶解度;CO2/CH4分离;结合能;

英文摘要: The methane(CH4) concentration technology is one of the major bottlenecks for the efficient utilization of CH4 in the low-concentration gas from mine. But the current solvents used to concentrate gas usually are highly volatile, and could mix with CH4 possibly and even release into the air and pollute it. For the low volatility and selectively dissolution for gases of ionic liquids, we propose to use ionic liquids to absorb and dissolve CH4 to concentrate the CH4 gas. Firstly, we will test the CH4 solubility in some ionic liquids with high symmetry cations under different experimental conditions using Quartz Crystal Microbalance. Secondly, based on the Group Contribution theory and the Molecular Dynamics, we will establish solubility prevention model of CH4 dissolving in a variety of ionic liquids, and analyze the general effect laws of temperature, pressure, anions and cations on the dissolution; Thirdly, using the Fourier transform infrared (FTIR) spectroscopy and Nuclear Magnetic Resonance (NMR) instrument, the chemical structure changes of the ILs before and after reacting with CH4 will be investigated; Moreover, at the molecular and electron levels, using the Quantum Chemical simulation, the chemical reaction pathway and the mechanism of ionic liquid dissolving CH4 will be revealed. Finally, the structure f

英文关键词: ionic liquids;solubility;CO2/CH4 separation;solid-state;binding energy

成为VIP会员查看完整内容
0

相关内容

【AAAI 2022】 GeomGCL:用于分子性质预测的几何图对比学习
专知会员服务
23+阅读 · 2022年2月27日
ICLR 2022|化学反应感知的分子表示学习
专知会员服务
19+阅读 · 2022年2月10日
NeurIPS 2021 | 通过动态图评分匹配预测分子构象
专知会员服务
20+阅读 · 2021年12月4日
【NeurIPS 2021】基于潜在空间能量模型的可控和组分生成
专知会员服务
15+阅读 · 2021年10月23日
专知会员服务
41+阅读 · 2021年9月7日
【ICML2021】学习分子构象生成的梯度场
专知会员服务
14+阅读 · 2021年5月30日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
26+阅读 · 2021年2月26日
ICLR 2022|化学反应感知的分子表示学习
专知
0+阅读 · 2022年2月10日
如何利用深度学习优化大气污染物排放量估算?
微软研究院AI头条
0+阅读 · 2021年8月31日
高分子材料领域的十大院士!
材料科学与工程
18+阅读 · 2018年9月18日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
10+阅读 · 2017年7月4日
小贴士
相关VIP内容
相关资讯
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
微信扫码咨询专知VIP会员