In this paper we present the asymptotic analysis of the realised quadratic variation for multivariate symmetric $\beta$-stable L\'evy processes, $\beta \in (0,2)$, and certain pure jump semimartingales. The main focus is on derivation of functional limit theorems for the realised quadratic variation and its spectrum. We will show that the limiting process is a matrix-valued $\beta$-stable L\'evy process when the original process is symmetric $\beta$-stable, while the limit is conditionally $\beta$-stable in case of integrals with respect to symmetric $\beta$-stable motions. These asymptotic results are mostly related to the work [5], which investigates the univariate version of the problem. Furthermore, we will show the implications for estimation of eigenvalues and eigenvectors of the quadratic variation matrix, which is a useful result for the principle component analysis. Finally, we propose a consistent subsampling procedure in the L\'evy setting to obtain confidence regions.
翻译:在本文中,我们将对多变量正对值$\beta$- sable L\' evy 进程、 $\beta $\ beta $\ in (0,2美元) 和某些纯跳跃半对数过程的已实现二次变异的二次变异进行无症状分析, 重点是对已实现二次变异及其频谱的功能限制理论的衍生。 我们将显示, 限制过程是一个矩阵价值为$\beta $- sable L\' evy 进程, 而原始过程是对称 $\ beeta $- sable, 而对于正对称 $\ beta $- sable 和某些纯跳跃半对数运动而言, 限值是有条件的 $\beta $- sable $- sable, 和某些纯跳跃半调半调 。 这些非典型结果大多与调查问题未受体变异体版本的工作[5] 有关。 此外, 我们将展示对四位变形变形矩阵估计的影响,, 这对等值和变形矩阵是有用的结果。 最后, 我们提议在 L 设置上建立一个稳定的亚模程序。