Due to widespread interest in machine translation and transfer learning, there are numerous algorithms for mapping multiple embeddings to a shared representation space. Recently, these algorithms have been studied in the setting of bilingual dictionary induction where one seeks to align the embeddings of a source and a target language such that translated word pairs lie close to one another in a common representation space. In this paper, we propose a method, Filtered Inner Product Projection (FIPP), for mapping embeddings to a common representation space and evaluate FIPP in the context of bilingual dictionary induction. As semantic shifts are pervasive across languages and domains, FIPP first identifies the common geometric structure in both embeddings and then, only on the common structure, aligns the Gram matrices of these embeddings. Unlike previous approaches, FIPP is applicable even when the source and target embeddings are of differing dimensionalities. We show that our approach outperforms existing methods on the MUSE dataset for various language pairs. Furthermore, FIPP provides computational benefits both in ease of implementation and scalability.


翻译:由于对机器翻译和传输学习的广泛兴趣,在绘制多个嵌入到共享代表空间的嵌入图方面有许多算法。最近,在设置双语字典入门时研究了这些算法,人们试图将源与目标语言的嵌入内容相匹配,这样在共同代表空间中,翻译的词对对口彼此接近。在本文中,我们提出了一个方法,即过滤产品产品投影(FIPP),用于绘制嵌入共同代表空间的映入图,并在双语词典入门时评价FIPP。由于语义的转变在语言和领域之间十分普遍,FIPP首先确定了共同的几何结构,然后才在共同结构中确定了共同的几何结构,将这些嵌入的Gram矩阵与以往的方法不同,即使源和目标嵌入内容不同,FIPP仍然适用。我们表明,我们的方法超越了多种语言配对口的MUSE数据集的现有方法。此外,FIPP提供计算效益,既便于实施,又便于伸缩。

0
下载
关闭预览

相关内容

[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
度量学习中的pair-based loss
极市平台
65+阅读 · 2019年7月17日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
已删除
将门创投
6+阅读 · 2019年4月10日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
Arxiv
7+阅读 · 2018年3月21日
VIP会员
相关VIP内容
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
相关资讯
度量学习中的pair-based loss
极市平台
65+阅读 · 2019年7月17日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
已删除
将门创投
6+阅读 · 2019年4月10日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
Top
微信扫码咨询专知VIP会员