Language agnostic and semantic-language information isolation is an emerging research direction for multilingual representations models. We explore this problem from a novel angle of geometric algebra and semantic space. A simple but highly effective method "Language Information Removal (LIR)" factors out language identity information from semantic related components in multilingual representations pre-trained on multi-monolingual data. A post-training and model-agnostic method, LIR only uses simple linear operations, e.g. matrix factorization and orthogonal projection. LIR reveals that for weak-alignment multilingual systems, the principal components of semantic spaces primarily encodes language identity information. We first evaluate the LIR on a cross-lingual question answer retrieval task (LAReQA), which requires the strong alignment for the multilingual embedding space. Experiment shows that LIR is highly effectively on this task, yielding almost 100% relative improvement in MAP for weak-alignment models. We then evaluate the LIR on Amazon Reviews and XEVAL dataset, with the observation that removing language information is able to improve the cross-lingual transfer performance.


翻译:语言学学和语义学信息隔离是多语种代表性模型的新兴研究方向。我们从几何代数和语义空间的新角度来探讨这一问题。一种简单而非常有效的方法“语言信息删除”将多语种代表中与语义相关的组成部分的语言身份信息从语言学信息中排除出来,这是在多语种数据培训前经过的预先培训。一种培训后和模式学方法,LIR只使用简单的线性操作,例如矩阵系数化和正方位投影。LIR揭示了在多语系关系薄弱的系统中,语义空间的主要组成部分主要是语言身份信息编码。我们首先评估了跨语种问题解答任务(LAREQA)的LIR,这要求对多语种嵌入空间进行强有力的调整。实验显示,语言学研究所在这项任务上非常有效,在微调模型方面使MAPA几乎100%的相对改进。然后我们评估亚马逊审评和XEVAL数据集的LIR,因为删除语言信息能够改进跨语言传输的绩效。

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
专知会员服务
89+阅读 · 2021年6月29日
最新《自监督表示学习》报告,70页ppt
专知会员服务
86+阅读 · 2020年12月22日
专知会员服务
36+阅读 · 2020年11月29日
专知会员服务
124+阅读 · 2020年9月8日
迁移学习简明教程,11页ppt
专知会员服务
108+阅读 · 2020年8月4日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Knowledge Distillation from Internal Representations
Arxiv
4+阅读 · 2019年10月8日
Arxiv
4+阅读 · 2018年9月6日
Arxiv
3+阅读 · 2017年12月18日
VIP会员
相关VIP内容
专知会员服务
89+阅读 · 2021年6月29日
最新《自监督表示学习》报告,70页ppt
专知会员服务
86+阅读 · 2020年12月22日
专知会员服务
36+阅读 · 2020年11月29日
专知会员服务
124+阅读 · 2020年9月8日
迁移学习简明教程,11页ppt
专知会员服务
108+阅读 · 2020年8月4日
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员