This paper presents DeepKoCo, a novel model-based agent that learns a latent Koopman representation from images. This representation allows DeepKoCo to plan efficiently using linear control methods, such as linear model predictive control. Compared to traditional agents, DeepKoCo is robust to task-irrelevant dynamics, thanks to the use of a tailored lossy autoencoder network that allows DeepKoCo to learn latent dynamics that reconstruct and predict only observed costs, rather than all observed dynamics. As our results show, DeepKoCo achieves a similar final performance as traditional model-free methods on complex control tasks, while being considerably more robust to distractor dynamics, making the proposed agent more amenable for real-life applications.
翻译:本文展示了DeepKooCo, 这是一种新型的基于模型的代理物, 它从图像中学习了潜伏的Koopman代表物。 这个代理物使得DeepKooCo能够高效地计划使用线性控制方法, 如线性模型预测控制。 与传统代理物相比, DeepKoCo对与任务相关的动态具有很强的活力, 因为它使用一个定制的丢失自动编码网络, 让 DeepKooCo可以学习潜在的动态物, 只有观察成本, 而不是所有观察到的动态物。 正如我们的结果所显示的, DeepKooCo在复杂控制任务上取得了类似于传统的不使用模型的方法的最终性能, 同时对分散动力力要强得多, 让拟议的代理物更容易被实际应用。