We introduce a general axiomatic framework for algebras with triangular decomposition, which allows for a systematic study of the Bernstein-Gelfand-Gelfand Category $\mathcal{O}$. The framework is stated via three relatively simple axioms; algebras satisfying them are termed "regular triangular algebras (RTAs)". These encompass a large class of algebras in the literature, including (a) generalized Weyl algebras, (b) symmetrizable Kac-Moody Lie algebras $\mathfrak{g}$, (c) quantum groups $U_q(\mathfrak{g})$ over "lattices with possible torsion", (d) infinitesimal Hecke algebras, (e) higher rank Virasoro algebras, and others. In order to incorporate these special cases under a common setting, our theory distinguishes between roots and weights, and does not require the Cartan subalgebra to be a Hopf algebra. We also allow RTAs to have roots in arbitrary monoids rather than root lattices, and the roots of the Borel subalgebras to lie in cones with respect to a strict subalgebra of the Cartan subalgebra. These relaxations of the triangular structure have not been explored in the literature. We then study the BGG Category $\mathcal{O}$ over an RTA. In order to work with general RTAs - and also bypass the use of central characters - we introduce conditions termed the "Conditions (S)", under which distinguished subcategories of Category $\mathcal{O}$ possess desirable homological properties, including: (a) being a finite length, abelian, self-dual category; (b) having enough projectives/injectives; or (c) being a highest weight category satisfying BGG Reciprocity. We discuss whether the above examples satisfy the various Conditions (S). We also discuss two new examples of RTAs that cannot be studied using previous theories of Category $\mathcal{O}$, but require the full scope of our framework. These include the first construction of algebras for which the "root lattice" is non-abelian.
翻译:我们引入了一个用于代数的通用代数框架 { 具有三角分解的代数 {, 允许系统研究 Bernstein- Gelfand- Gelfand 类 $\ mathcal{ O} 美元。 框架通过三个相对简单的正数表示 ; 满足它们的代数被称为“ 正常三角代数 ” 。 这些代数包含文献中一大类代数, 包括 (a) 通用的 Weyl 代数, (b) 相匹配的 Kac- Mody lie 代数, (b) 美元- mayteria 的代数 。 (c) 量组 AL_q (\ mathfrak{g} 美元) 。 这个代数组需要三个相对简单的正数 。 (d) 无限的三角代数变数的代数 。 (e) 为了将这些特例纳入共同的设置中, 我们的理论也区分了根值和重量, 不需要Cartergebreal 类 的代数 。 (wefalalalalalal deal deal deal) der) (weder) disader) 。 (We) ormader) der ors, or deal orma ormader ormais to be be be a der or der der der ortial der der der 。