We initiate the systematic study of loop conditions of arbitrary finite width. Each loop condition is a finite set of identities of a particular shape, and satisfaction of these identities in an algebra is characterized by it forcing a constant tuple into certain invariant relations on powers of the algebra. By showing the equivalence of various loop conditions, we are able to provide a new and short proof of the recent celebrated result stating the existence of a weakest non-trivial idempotent strong Mal'cev condition. We then consider pseudo-loop conditions, a modification suitable for oligomorphic algebras, and show the equivalence of various pseudo-loop conditions within this context. This allows us to provide a new and short proof of the fact that the satisfaction of non-trivial identities of height 1 in a closed oligomorphic core implies the satisfaction of a fixed single identity.
翻译:我们开始对任意有限宽度的环状条件进行系统研究。 每个环状条件是一个特定形状的有限特性组,这些特性在代数中的满足性特征的特点是它迫使代数力的某些变异关系不断陷入某种变异关系之中。通过显示各种环状条件的等同性,我们能够提供一份新的和简短的最近已知结果的证明,指出存在一个最弱的非三维的半能强的马尔切夫状态。然后我们考虑假环状条件,一种适合寡形代数的修改,并表明在此情况下各种假代数条件的等同性。这使我们能够提供一个新的和简短的证据,证明在封闭的寡状核心中达到1号高度的非三联特性意味着满足固定的单一身份。