The availability of reliable, high-resolution climate and weather data is important to inform long-term decisions on climate adaptation and mitigation and to guide rapid responses to extreme events. Forecasting models are limited by computational costs and, therefore, often generate coarse-resolution predictions. Statistical downscaling, including super-resolution methods from deep learning, can provide an efficient method of upsampling low-resolution data. However, despite achieving visually compelling results in some cases, such models frequently violate conservation laws when predicting physical variables. In order to conserve physical quantities, we develop methods that guarantee physical constraints are satisfied by a deep learning downscaling model while also improving their performance according to traditional metrics. We compare different constraining approaches and demonstrate their applicability across different neural architectures as well as a variety of climate and weather datasets. Besides enabling faster and more accurate climate predictions, we also show that our novel methodologies can improve super-resolution for satellite data and standard datasets.
翻译:可靠的、高分辨率的气候和天气数据的可用性十分重要,有助于作出关于气候适应和减缓的长期决定,并指导对极端事件作出迅速反应。预测模型受到计算成本的限制,因此往往产生粗度的预测。统计降尺度,包括深层学习产生的超分辨率方法,可以提供一种高效的方法,对低分辨率数据进行高尺度的取样。然而,尽管在某些情况下取得了令人瞩目的结果,但这类模型在预测物理变量时经常违反保护法。为了保护物理数量,我们制定了一些方法,保证通过深层学习下调模型满足物理限制,同时根据传统指标改进它们的性能。我们比较不同的约束性方法,并表明它们适用于不同的神经结构以及各种气候和天气数据集。我们除了能够更快和更准确地预测气候数据外,还表明我们的新方法可以改进卫星数据和标准数据集的超分辨率。</s>