Constructing a shortest path between two network nodes is a fundamental task in distributed computing. This work develops schemes for the construction of shortest paths in randomized beeping networks between a predetermined source node and an arbitrary set of destination nodes. Our first scheme constructs a (single) shortest path to an arbitrary destination in $O (D \log\log n + \log^3 n)$ rounds with high probability. Our second scheme constructs multiple shortest paths, one per each destination, in $O (D \log^2 n + \log^3 n)$ rounds with high probability. Our schemes are based on a reduction of the above shortest path construction tasks to a decomposition of hypergraphs into bipartite hypergraphs: We develop a beeping procedure that partitions the (polynomially-large) hyperedge set of a hypergraph $H = (V_H, E_H)$ into $k = \Theta (\log^2 n)$ disjoint subsets $F_1 \cup \cdots \cup F_k = E_H$ such that the (sub-)hypergraph $(V_H, F_i)$ is bipartite in the sense that there exists a vertex subset $U \subseteq V$ such that $|U \cap e| = 1$ for every $e \in F_i$. This procedure turns out to be instrumental in speeding up shortest path constructions under the beeping model.
翻译:在两个网络节点之间构造最短路径是分布式计算的基本任务。 这项工作为在预设源节点和任意的目的地节点组合之间随机化的蜂鸣网络中构建最短路径制定了计划。 我们的第一个方案在$O (D\log\log n+\log3 n) 圆圆中构建了一个( 单) 最短路径, 概率高。 我们的第二个方案以美元( D\ log\ log\ log n+\ log3 n) 圆向任意目的地建造最短路径。 我们的第二个方案以美元( D\ log\ log2 n +\ log3 n) 圆向每个最短路径构建一个最短路径, 以美元( log2 n2 n +\ log3 nn) 圆为单位。 我们的计划的基础是将最短路径的建设任务缩小到将高目标值( Polomomomia- g) 圆的超端设置为 $ ( V_ H) = 美元 美元 模式 $ ( 美元 (\ log_ 美元) 美元) 速度为 美元 ( 美元= 美元 美元= 美元= 美元= 美元= 美元= 美元= 美元= 美元= 美元= 欧元= 欧元= 欧元= 的系统 的快速= 的快速=