We consider a $p$-dimensional, centered normal population such that all variables have a positive variance $\sigma^2$ and any correlation coefficient between different variables is a given nonnegative constant $\rho<1$. Suppose that both the sample size $n$ and population dimension $p$ tend to infinity with $p/n \to c>0$. We prove that the limiting spectral distribution of a sample correlation matrix is Mar\v{c}enko-Pastur distribution of index $c$ and scale parameter $1-\rho$. By the limiting spectral distributions, we rigorously show the limiting behavior of widespread stopping rules Guttman-Kaiser criterion and cumulative-percentage-of-variation rule in PCA and EFA. As a result, we establish the following dichotomous behavior of Guttman-Kaiser criterion when both $n$ and $p$ are large, but $p/n$ is small: (1) the criterion retains a small number of variables for $\rho>0$, as suggested by Kaiser, Humphreys, and Tucker [Kaiser, H. F. (1992). On Cliff's formula, the Kaiser-Guttman rule and the number of factors. Percept. Mot. Ski. 74]; and (2) the criterion retains $p/2$ variables for $\rho=0$, as in a simulation study [Yeomans, K. A. and Golder, P. A. (1982). The Guttman-Kaiser criterion as a predictor of the number of common factors. J. Royal Stat. Soc. Series D. 31(3)].
翻译:我们考虑的是美元维度、中位的正常人口,因此所有变量的正差值为$gma/2美元,而不同变量之间的任何相关系数都是一个非负差常数 $rho < $1美元。假设样本大小为美元和人口维度的美元倾向于以美元/美元/美元/美元/美元/美元/美元/美元/美元为无限值。我们证明,抽样相关矩阵的有限光谱分布是Mar\v{c}enko-Pastur,但美元/美元分布很小:(1)根据Kaiser、Humpherman-Kaiser 的分布,我们严格显示了广泛停止Gutman-Kaiser规则以及常设仲裁和全民教育的累积百分比规则的限制性行为。结果,我们确立了以下Guttman-Kaiser标准,当美元和美元是大型时,但美元/美元:1美元/美元的标准保留了美元(美元/rho)的少量变量值。如Kaiser、Gumefrier 和Ber[卡/2 标准、Kal-kiseral-ral-x、Kal-ral-ral-ral-x.x.xx.xxxxxxx.x.xxxxxxxxxxxxxxxxxxxxx、K.xxxxxxxxxxxxxxxxx、K.xxxxxxxxxxx.xxxxxxxxxxxxxxxxxx、Kxxxxxxxxxxx、Kx、Kxxxxxxxxxxxxxxxxxxxxxxxx、K.x、K.xx、K.xxxxxxxxxxxxxxxxx、Kx、K.xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx、Kx、Kx、Kx、Kx、Kx、K.x、Kxxxxxxxxxxx、K.x、K.xxxxxxxxxx、Kx、K