Hybrid analog and digital beamforming transceivers are instrumental in addressing the challenge of expensive hardware and high training overheads in the next generation millimeter-wave (mm-Wave) massive MIMO (multiple-input multiple-output) systems. However, lack of fully digital beamforming in hybrid architectures and short coherence times at mm-Wave impose additional constraints on the channel estimation. Prior works on addressing these challenges have focused largely on narrowband channels wherein optimization-based or greedy algorithms were employed to derive hybrid beamformers. In this paper, we introduce a deep learning (DL) approach for channel estimation and hybrid beamforming for frequency-selective, wideband mm-Wave systems. In particular, we consider a massive MIMO Orthogonal Frequency Division Multiplexing (MIMO-OFDM) system and propose three different DL frameworks comprising convolutional neural networks (CNNs), which accept the raw data of received signal as input and yield channel estimates and the hybrid beamformers at the output. We also introduce both offline and online prediction schemes. Numerical experiments demonstrate that, compared to the current state-of-the-art optimization and DL methods, our approach provides higher spectral efficiency, lesser computational cost and fewer number of pilot signals, and higher tolerance against the deviations in the received pilot data, corrupted channel matrix, and propagation environment.


翻译:用于应对这些挑战的模拟和数字混合模拟和数字波形收发器在应对下一代千兆瓦(毫米-瓦夫)大规模MSIM(多投入多输出多输出)系统中昂贵硬件和高培训间接费用的挑战方面起了重要作用,然而,混合结构中缺乏完全数字波束,而且毫米-瓦夫时缺乏较短的一致性时间,对频道估计造成额外的限制。以前关于应对这些挑战的工作主要集中于窄带渠道,即采用优化或贪婪算法得出混合波形。本文还采用了一种深度学习(DL)方法,用于频度选择、宽带毫米-瓦夫系统的频道估计和混合波束组合。我们尤其考虑采用大规模移动或多输出波形结构(多输出多输出多输出多输出)结构中缺乏完全数字波束,并提出了三个不同的DL框架,其中包括革命神经网络(CNNN),其中接受接收的信号原始数据作为投入和收益频道估计,以及产出的混合波状。我们还采用了离线和在线预测计划,用于频率选择和宽带-宽毫米-波段-波段的频道的频道估算和混合组合组合组合组合组合。我们所接受的数据实验实验显示,比目前更低的轨道、更低的轨道、更低的轨道、更低的升级的轨道、更低的模型和更低的实验性、更低的轨道、更低的计算方法,以及更低的模型式、比比比更低的轨道的轨道的模型化、更低的模型化、更低的轨道化、更低的计算。

0
下载
关闭预览

相关内容

专知会员服务
61+阅读 · 2020年3月19日
AutoML与轻量模型大列表
专知
8+阅读 · 2019年4月29日
【泡泡一分钟】基于运动估计的激光雷达和相机标定方法
泡泡机器人SLAM
25+阅读 · 2019年1月17日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
IEEE2018|An Accurate and Real-time 3D Tracking System for Robots
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
(TensorFlow)实时语义分割比较研究
机器学习研究会
9+阅读 · 2018年3月12日
【推荐】深度学习时序处理文献列表
机器学习研究会
7+阅读 · 2017年11月29日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
VIP会员
相关VIP内容
专知会员服务
61+阅读 · 2020年3月19日
相关资讯
AutoML与轻量模型大列表
专知
8+阅读 · 2019年4月29日
【泡泡一分钟】基于运动估计的激光雷达和相机标定方法
泡泡机器人SLAM
25+阅读 · 2019年1月17日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
IEEE2018|An Accurate and Real-time 3D Tracking System for Robots
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
(TensorFlow)实时语义分割比较研究
机器学习研究会
9+阅读 · 2018年3月12日
【推荐】深度学习时序处理文献列表
机器学习研究会
7+阅读 · 2017年11月29日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员