This study presents PRISM, a probabilistic simplex component analysis approach to identifying the vertices of a data-circumscribing simplex from data. The problem has a rich variety of applications, the most notable being hyperspectral unmixing in remote sensing and non-negative matrix factorization in machine learning. PRISM uses a simple probabilistic model, namely, uniform simplex data distribution and additive Gaussian noise, and it carries out inference by maximum likelihood. The inference model is sound in the sense that the vertices are provably identifiable under some assumptions, and it suggests that PRISM can be effective in combating noise when the number of data points is large. PRISM has strong, but hidden, relationships with simplex volume minimization, a powerful geometric approach for the same problem. We study these fundamental aspects, and we also consider algorithmic schemes based on importance sampling and variational inference. In particular, the variational inference scheme is shown to resemble a matrix factorization problem with a special regularizer, which draws an interesting connection to the matrix factorization approach. Numerical results are provided to demonstrate the potential of PRISM.
翻译:这项研究介绍了PRISM, 一种概率简单分析法, 用于确定数据累积数据中简单x的顶点。 问题有多种多样的应用, 最明显的是遥感中的超光谱分解和机器学习中的非负矩阵因子化。 PRISM 使用一个简单的概率模型, 即统一简单数据分布和添加高斯噪音, 并以最大可能性进行推论。 推论模型是有道理的, 其含义是, 在某些假设下, 顶点是可以辨别出来的, 并且它表明, 当数据点数量很大时, PRISM 能够有效地消除噪音。 PRISM 与简单x体积最小化的强超光谱分解关系, 与简单的体积最小化, 是一个针对同一问题的强有力的几何方法。 我们研究这些基本方面, 我们还考虑基于重要取样和变异推论的算法方法。 特别是, 变推论方案显示, 矩阵因子化问题与特殊定质器相似, 与矩阵因子化法具有令人感兴趣的联系。