Based on the signals received across its antennas, a multi-antenna base station (BS) can apply the classic multiple signal classification (MUSIC) algorithm for estimating the angle of arrivals (AOAs) of its incident signals. This method can be leveraged to localize the users if their line-of-sight (LOS) paths to the BS are available. In this paper, we consider a more challenging AOA estimation setup in the intelligent reflecting surface (IRS) assisted integrated sensing and communication (ISAC) system, where LOS paths do not exist between the BS and the users, while the users' signals can be transmitted to the BS merely via their LOS paths to the IRS as well as the LOS path from the IRS to the BS. Specifically, we treat the IRS as the anchor and are interested in estimating the AOAs of the incident signals from the users to the IRS. Note that we have to achieve the above goal based on the signals received by the BS, because the passive IRS cannot process its received signals. However, the signals received across different antennas of the BS only contain AOA information of its incident signals via the LOS path from the IRS to the BS. To tackle this challenge arising from the spatial-domain received signals, we propose an innovative approach to create temporal-domain multi-dimension received signals for estimating the AOAs of the paths from the users to the IRS. Specifically, via a proper design of the user message pattern and the IRS reflecting pattern, we manage to show that our designed temporal-domain multi-dimension signals can be surprisingly expressed as a function of the virtual steering vectors of the IRS towards the users. This amazing result implies that the classic MUSIC algorithm can be applied to our designed temporal-domain multi-dimension signals for accurately estimating the AOAs of the signals from the users to the IRS.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员