Incentive mechanism design is crucial for enabling federated learning. We deal with clustering problem of agents contributing to federated learning setting. Assuming agents behave selfishly, we model their interaction as a stable coalition partition problem using hedonic games where agents and clusters are the players and coalitions, respectively. We address the following question: is there any utility allocation method ensuring a Nash-stable coalition partition? We propose the Nash-stable set and analyze the conditions of non-emptiness. Besides, we deal with the decentralized coalition partition. We formulate the problem as a non-cooperative game and prove the existence of a potential.
翻译:激励机制的设计对于促进联合学习至关重要。 我们处理有助于联合学习环境的代理商的集群问题。 假设代理商自私行事,我们用他们作为稳定的联合分配问题来模拟他们的互动关系。 我们分别用代理商和集群是玩家和联盟的超音速游戏来模拟他们的互动关系。 我们处理的问题是: 是否有任何公用事业分配方法可以确保纳什稳定的联合分治? 我们提出纳什稳定数据集并分析非空性的条件。 此外, 我们处理分散化的联盟分治。 我们把问题发展成一个不合作的游戏,并证明存在潜力。