The Reeb graph of a scalar function defined on a domain gives a topologically meaningful summary of that domain. Reeb graphs have been shown in the past decade to be of great importance in geometric processing, image processing, computer graphics, and computational topology. The demand for analyzing large data sets has increased in the last decade. Hence the parallelization of topological computations needs to be more fully considered. We propose a parallel augmented Reeb graph algorithm on triangulated meshes with and without a boundary. That is, in addition to our parallel algorithm for computing a Reeb graph, we describe a method for extracting the original manifold data from the Reeb graph structure. We demonstrate the running time of our algorithm on standard datasets. As an application, we show how our algorithm can be utilized in mesh segmentation algorithms.
翻译:在域上定义的星标函数的 Reeb 图形图提供了对域具有地貌意义的摘要。 Reeb 图表在过去十年中显示在几何处理、图像处理、计算机图形和计算地貌学中非常重要。 过去十年对分析大型数据集的需求增加了。 因此,需要更充分地考虑地层计算平行化。 我们建议对有边界和没有边界的三角间贝进行平行增强的 Reeb 图形算法。 这是除了我们计算Reeb 图形的平行算法外,我们还描述了从 Reeb 图形结构中提取原始多元数据的方法。 我们在标准数据集中展示了我们算法的运行时间。 作为应用程序,我们展示了我们的算法如何用于 mesh 分区算法。