In this paper we present ISA, an approach for learning and exploiting subgoals in episodic reinforcement learning (RL) tasks. ISA interleaves reinforcement learning with the induction of a subgoal automaton, an automaton whose edges are labeled by the task's subgoals expressed as propositional logic formulas over a set of high-level events. A subgoal automaton also consists of two special states: a state indicating the successful completion of the task, and a state indicating that the task has finished without succeeding. A state-of-the-art inductive logic programming system is used to learn a subgoal automaton that covers the traces of high-level events observed by the RL agent. When the currently exploited automaton does not correctly recognize a trace, the automaton learner induces a new automaton that covers that trace. The interleaving process guarantees the induction of automata with the minimum number of states, and applies a symmetry breaking mechanism to shrink the search space whilst remaining complete. We evaluate ISA in several gridworld and continuous state space problems using different RL algorithms that leverage the automaton structures. We provide an in-depth empirical analysis of the automaton learning performance in terms of the traces, the symmetry breaking and specific restrictions imposed on the final learnable automaton. For each class of RL problem, we show that the learned automata can be successfully exploited to learn policies that reach the goal, achieving an average reward comparable to the case where automata are not learned but handcrafted and given beforehand.
翻译:在本文中,我们展示了ISA, 这是一种学习和利用子目标的方法, 这是一种在偶发加固学习( RL) 任务中学习和利用子目标的方法。 ISA 将强化学习与子目标 Automaton 连接起来, 它的边缘被该任务子目标的子目标标记为对一系列高级别活动的假设逻辑公式。 一个子目标自动图也包含两个特殊状态: 表示任务成功完成的状态, 以及表明任务已经完成了但没有成功。 一个状态的直观逻辑编程系统用来学习一个子目标自动图, 覆盖RL代理所观察到的高层事件的痕迹。 当当前开发的Outomaton 的子目标没有正确识别一个痕迹时, automata 学习者会引出新的自动图, 连接过程可以保证将自动数据引入最小的州数量, 并应用一个给定的对称断机制来缩小搜索空间, 但仍保持完整。 我们用一些电网世界的 ISA 和连续的状态空间政策来学习一个高级事件, 正在通过不同的 Ralalal 分析, 学习一个具体的自动分析, 数据 的系统 学习 的系统, 将自动解算法 的系统进行 学习 学习 学习 学习 。