Suppose that a random variable $X$ of interest is observed perturbed by independent additive noise $Y$. This paper concerns the "the least favorable perturbation" $\hat Y_\ep$, which maximizes the prediction error $E(X-E(X|X+Y))^2$ in the class of $Y$ with $ \var (Y)\leq \ep$. We find a characterization of the answer to this question, and show by example that it can be surprisingly complicated. However, in the special case where $X$ is infinitely divisible, the solution is complete and simple. We also explore the conjecture that noisier $Y$ makes prediction worse.
翻译:假设独立的添加剂噪音会干扰利息的随机变数 $X 美元 。 本文涉及“ 最不优惠的扰动”$\ hate Y ⁇ $, 使美元( X- E( X ⁇ X+Y)) $2美元类的预测误差最大化, 以 $ = var (Y)\leq\ ep $。 我们发现对这一问题答案的描述, 并以实例来说明, 这个问题可能令人惊讶地复杂。 但是, 在美元极易变的特殊情况下, 答案是完整而简单的。 我们还探索了新美元会使预测更糟的假设。