We present the first method capable of photorealistically reconstructing a non-rigidly deforming scene using photos/videos captured casually from mobile phones. Our approach -- D-NeRF -- augments neural radiance fields (NeRF) by optimizing an additional continuous volumetric deformation field that warps each observed point into a canonical 5D NeRF. We observe that these NeRF-like deformation fields are prone to local minima, and propose a coarse-to-fine optimization method for coordinate-based models that allows for more robust optimization. By adapting principles from geometry processing and physical simulation to NeRF-like models, we propose an elastic regularization of the deformation field that further improves robustness. We show that D-NeRF can turn casually captured selfie photos/videos into deformable NeRF models that allow for photorealistic renderings of the subject from arbitrary viewpoints, which we dub "nerfies." We evaluate our method by collecting data using a rig with two mobile phones that take time-synchronized photos, yielding train/validation images of the same pose at different viewpoints. We show that our method faithfully reconstructs non-rigidly deforming scenes and reproduces unseen views with high fidelity.
翻译:我们展示了第一个能够利用从移动电话中随意拍摄的照片/视频来对非硬性变形场进行光化重建的方法。我们的方法 -- -- D- NERF -- -- 通过优化一个额外的连续体积变形场,将每个观测到的点扭曲成一个5D NERF。我们观察到,这些类似 NERF 的变形场很容易被本地微型所利用,并提议了一种协调模型的粗到软优化方法,以便能够进行更强有力的优化。我们通过将几何处理和物理模拟的原则调整到类似 NERF 的模型,我们建议对变形场进行弹性调整,以进一步提高强性。我们显示,D- NERF 可以将随机拍摄的自相照片/影像转化为可变形的NERF 模型,以便从任意角度对主题进行光真化的描述,我们称之为"神经"。我们用两台移动电话来收集数据的方法评估我们的方法。我们用两台移动电话来收集时间同步照片、产生火车/校正图像,从而以不同的方式重新显示我们不真实的图像。