The $\alpha$-divergences include Kullback-Leibler divergence, Hellinger distance and $\chi^2$-divergence. We derive differntial and integral relations between $\alpha$-divergences that are generalizations of the relation between the Kullback-Leibler divergence and the $\chi^2$-divergence. We also show tight lower bounds for $\alpha$-divergences under given means and variances. In particular, we show the necessary and sufficient condition such that the binary divergences, which are divergences between probability measures on the same $2$-point set, always attain lower bounds. Kullback-Leibler divergence, Hellinger distance, and $\chi^2$-divergence satisfy this condition.


翻译:============================================================================================================================================================= ===============================================================================================================================================================================================================================================================================================================================================================

0
下载
关闭预览

相关内容

最新《生成式对抗网络数学导论》,30页pdf
专知会员服务
78+阅读 · 2020年9月3日
Python图像处理,366页pdf,Image Operators Image Processing in Python
专知会员服务
61+阅读 · 2020年3月4日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
revelation of MONet
CreateAMind
5+阅读 · 2019年6月8日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年7月15日
Arxiv
0+阅读 · 2021年7月14日
VIP会员
相关资讯
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
revelation of MONet
CreateAMind
5+阅读 · 2019年6月8日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员