In this work, we focus on improving the robot's dexterous capability by exploiting visual sensing and adaptive force control. TeachNet, a vision-based teleoperation learning framework, is exploited to map human hand postures to a multi-fingered robot hand. We augment TeachNet, which is originally based on an imprecise kinematic mapping and position-only servoing, with a biomimetic learning-based compliance control algorithm for dexterous manipulation tasks. This compliance controller takes the mapped robotic joint angles from TeachNet as the desired goal, computes the desired joint torques. It is derived from a computational model of the biomimetic control strategy in human motor learning, which allows adapting the control variables (impedance and feedforward force) online during the execution of the reference joint angle trajectories. The simultaneous adaptation of the impedance and feedforward profiles enables the robot to interact with the environment in a compliant manner. Our approach has been verified in multiple tasks in physics simulation, i.e., grasping, opening-a-door, turning-a-cap, and touching-a-mouse, and has shown more reliable performances than the existing position control and the fixed-gain-based force control approaches.


翻译:在这项工作中,我们侧重于通过利用视觉感测和适应性力量控制来提高机器人的超光速能力。TeachNet是一个基于视觉的远程操作学习框架,用于将人的手姿势映射成多手指机器人手。我们扩大TeachNet,它最初基于不精确的动能映射和定位专用悬浮,并配有用于极速操作任务的生物模拟学习基于学习的合规控制算法。这个合规控制器将图画的机器人联合角度从TeachNet(TeachNet)作为预期的目标,计算所期望的联合硬石。它来自人类运动学习的生物模拟控制战略的计算模型,该模型允许在使用参考联合角轨迹时将控制变量(阻碍和进食力向前)进行在线调整。同时调整阻力和进向前配置使机器人能够以兼容的方式与环境互动。我们在物理模拟的多项任务中已经验证了我们的方法,即掌握、打开门、打开门、转变屏和感触动力控制方法,并显示更可靠的现有固定控制方法。

0
下载
关闭预览

相关内容

【DeepMind】强化学习教程,83页ppt
专知会员服务
153+阅读 · 2020年8月7日
深度学习界圣经“花书”《Deep Learning》中文版来了
专知会员服务
234+阅读 · 2019年10月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
153+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
12+阅读 · 2018年4月27日
carla 学习笔记
CreateAMind
9+阅读 · 2018年2月7日
carla 体验效果 及代码
CreateAMind
7+阅读 · 2018年2月3日
carla无人驾驶模拟中文项目 carla_simulator_Chinese
CreateAMind
3+阅读 · 2018年1月30日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
16篇论文入门manipulation研究
机器人学家
15+阅读 · 2017年6月6日
Arxiv
0+阅读 · 2021年9月18日
Arxiv
4+阅读 · 2021年4月13日
VIP会员
相关VIP内容
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
12+阅读 · 2018年4月27日
carla 学习笔记
CreateAMind
9+阅读 · 2018年2月7日
carla 体验效果 及代码
CreateAMind
7+阅读 · 2018年2月3日
carla无人驾驶模拟中文项目 carla_simulator_Chinese
CreateAMind
3+阅读 · 2018年1月30日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
16篇论文入门manipulation研究
机器人学家
15+阅读 · 2017年6月6日
Top
微信扫码咨询专知VIP会员