A {\em theta} is a graph made of three internally vertex-disjoint chordless paths $P_1 = a \dots b$, $P_2 = a \dots b$, $P_3 = a \dots b$ of length at least~2 and such that no edges exist between the paths except the three edges incident to $a$ and the three edges incident to $b$. A {\em pyramid} is a graph made of three chordless paths $P_1 = a \dots b_1$, $P_2 = a \dots b_2$, $P_3 = a \dots b_3$ of length at least~1, two of which have length at least 2, vertex-disjoint except at $a$, and such that $b_1b_2b_3$ is a triangle and no edges exist between the paths except those of the triangle and the three edges incident to~$a$. An \emph{even hole} is a chordless cycle of even length. For three non-negative integers $i\leq j\leq k$, let $S_{i,j,k}$ be the tree with a vertex $v$, from which start three paths with $i$, $j$, and $k$ edges respectively. We denote by $K_t$ the complete graph on $t$ vertices. We prove that for all non-negative integers $i, j, k$, the class of graphs that contain no theta, no $K_3$, and no $S_{i, j, k}$ as induced subgraphs have bounded treewidth. We prove that for all non-negative integers $i, j, k, t$, the class of graphs that contain no even hole, no pyramid, no $K_t$, and no $S_{i, j, k}$ as induced subgraphs have bounded treewidth. To bound the treewidth, we prove that every graph of large treewidth must contain a large clique or a minimal separator of large cardinality.


翻译:$P_2 = a dots b$, $P_ 3 = a dots b$, a dots b$, a dots b$, $P_ 3 = a dots b$, 长度至少为~2, 路径之间没有边际, 但三个边缘事件为美元, 三个边缘事件为美元。 一个 $金字塔} 是一个由三个无弦路径组成的图表 $P_ 1 = adots b$, 美元 美元 美元, 美元 P_ 2 = adots b$, 美元 美元 3 =dots b$, 美元 2 美元 = a 2, 美元, 美元 美元为美元, 美元为美元 美元, 美元 美元, 美元 美元 美元, 美元, 美元, 美元 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元

0
下载
关闭预览

相关内容

专知会员服务
84+阅读 · 2020年12月5日
图节点嵌入(Node Embeddings)概述,9页pdf
专知会员服务
39+阅读 · 2020年8月22日
【ICLR2020】图神经网络与图像处理,微分方程,27页ppt
专知会员服务
47+阅读 · 2020年6月6日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
word2Vec总结
AINLP
3+阅读 · 2019年11月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
已删除
将门创投
4+阅读 · 2018年7月31日
[DLdigest-8] 每日一道算法
深度学习每日摘要
4+阅读 · 2017年11月2日
Arxiv
0+阅读 · 2020年12月10日
On the Metric and Computation of PAC Codes
Arxiv
0+阅读 · 2020年12月10日
Vertex Cover Reconfiguration and Beyond
Arxiv
0+阅读 · 2020年12月9日
Arxiv
0+阅读 · 2020年12月8日
Arxiv
0+阅读 · 2020年12月7日
Arxiv
0+阅读 · 2020年12月6日
Arxiv
0+阅读 · 2020年12月6日
VIP会员
相关VIP内容
专知会员服务
84+阅读 · 2020年12月5日
图节点嵌入(Node Embeddings)概述,9页pdf
专知会员服务
39+阅读 · 2020年8月22日
【ICLR2020】图神经网络与图像处理,微分方程,27页ppt
专知会员服务
47+阅读 · 2020年6月6日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
相关资讯
word2Vec总结
AINLP
3+阅读 · 2019年11月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
已删除
将门创投
4+阅读 · 2018年7月31日
[DLdigest-8] 每日一道算法
深度学习每日摘要
4+阅读 · 2017年11月2日
Top
微信扫码咨询专知VIP会员