In this work, we consider the problem of sampling a $k$-clique in a graph from an almost uniform distribution in sublinear time in the general graph query model. Specifically the algorithm should output each $k$-clique with probability $(1\pm \epsilon)/n_k$, where $n_k$ denotes the number of $k$-cliques in the graph and $\epsilon$ is a given approximation parameter. We prove that the query complexity of this problem is \[ \Theta^*\left(\max\left\{ \left(\frac{(n\alpha)^{k/2}}{ n_k}\right)^{\frac{1}{k-1}} ,\; \min\left\{n\alpha,\frac{n\alpha^{k-1}}{n_k} \right\}\right\}\right). \] where $n$ is the number of vertices in the graph, $\alpha$ is its arboricity, and $\Theta^*$ suppresses the dependence on $(\log n/\epsilon)^{O(k)}$. Interestingly, this establishes a separation between approximate counting and approximate uniform sampling in the sublinear regime. For example, if $k=3$, $\alpha = O(1)$, and $n_3$ (the number of triangles) is $\Theta(n)$, then we get a lower bound of $\Omega(n^{1/4})$ (for constant $\epsilon$), while under these conditions, a $(1\pm \epsilon)$-approximation of $n_3$ can be obtained by performing $\textrm{poly}(\log(n/\epsilon))$ queries (Eden, Ron and Seshadhri, SODA20). Our lower bound follows from a construction of a family of graphs with arboricity $\alpha$ such that in each graph there are $n_k$ cliques (of size $k$), where one of these cliques is "hidden" and hence hard to sample. Our upper bound is based on defining a special auxiliary graph $H_k$, such that sampling edges almost uniformly in $H_k$ translates to sampling $k$-cliques almost uniformly in the original graph $G$. We then build on a known edge-sampling algorithm (Eden, Ron and Rosenbaum, ICALP19) to sample edges in $H_k$, where the challenge is simulate queries to $H_k$ while being given access only to $G$.


翻译:在这项工作中, 我们考虑在图表中取样 $- click 的问题。 我们证明这个问题的查询复杂性是\ [\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ x\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\可以\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

0
下载
关闭预览

相关内容

专知会员服务
51+阅读 · 2020年12月14日
最新【深度生成模型】Deep Generative Models,104页ppt
专知会员服务
70+阅读 · 2020年10月24日
因果图,Causal Graphs,52页ppt
专知会员服务
249+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
MIT新书《强化学习与最优控制》
专知会员服务
279+阅读 · 2019年10月9日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【LeetCode 500】关关的刷题日记27 Keyboard Row
专知
3+阅读 · 2017年11月5日
[DLdigest-8] 每日一道算法
深度学习每日摘要
4+阅读 · 2017年11月2日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年2月10日
Arxiv
0+阅读 · 2021年2月10日
Arxiv
0+阅读 · 2021年2月9日
Arxiv
0+阅读 · 2021年2月9日
Arxiv
0+阅读 · 2021年2月8日
VIP会员
相关VIP内容
专知会员服务
51+阅读 · 2020年12月14日
最新【深度生成模型】Deep Generative Models,104页ppt
专知会员服务
70+阅读 · 2020年10月24日
因果图,Causal Graphs,52页ppt
专知会员服务
249+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
MIT新书《强化学习与最优控制》
专知会员服务
279+阅读 · 2019年10月9日
相关资讯
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【LeetCode 500】关关的刷题日记27 Keyboard Row
专知
3+阅读 · 2017年11月5日
[DLdigest-8] 每日一道算法
深度学习每日摘要
4+阅读 · 2017年11月2日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员