Graph embeddings deal with injective maps from a given simple, undirected graph $G=(V,E)$ into a metric space, such as $\mathbb{R}^n$ with the Euclidean metric. This concept is widely studied in computer science, see \cite{ge1}, but also offers attractive research in pure graph theory \cite{ge2}. In this note we show that any graph can be embedded into a particularly simple metric space: $\{0,1\}^n$ with the Hamming distance, for large enough $n$.
翻译:图形嵌入涉及从给定的简单、非方向的图形$G=(V,E) $G=(V,E) 的射入空间的射入图,例如 $\ mathbb{R ⁇ n$ 和 Euclidean 度量值。 这一概念在计算机科学中得到了广泛的研究, 见\ cite{ge1}, 但也提供了纯图形理论\ cite{ge2} 的有吸引力的研究。 在本说明中, 我们显示, 任何图形都可以嵌入一个特别简单的度量度空间: $@ 0. 1 ⁇ n$ 和 Hamming 距离, 足够大 $ 。