In this paper, we consider the framework of privacy amplification via iteration, which is originally proposed by Feldman et al. and subsequently simplified by Asoodeh et al. in their analysis via the contraction coefficient. This line of work focuses on the study of the privacy guarantees obtained by the projected noisy stochastic gradient descent (PNSGD) algorithm with hidden intermediate updates. A limitation in the existing literature is that only the early stopped PNSGD has been studied, while no result has been proved on the more widely-used PNSGD applied on a shuffled dataset. Moreover, no scheme has been yet proposed regarding how to decrease the injected noise when new data are received in an online fashion. In this work, we first prove a privacy guarantee for shuffled PNSGD, which is investigated asymptotically when the noise is fixed for each sample size $n$ but reduced at a predetermined rate when $n$ increases, in order to achieve the convergence of privacy loss. We then analyze the online setting and provide a faster decaying scheme for the magnitude of the injected noise that also guarantees the convergence of privacy loss.


翻译:在本文中,我们考虑了通过迭代扩大隐私框架,该框架最初由Feldman等人提出,后来由Asoodeh等人在通过收缩系数进行分析时加以简化。这一工作重点是研究预测的噪音随机梯度梯度下降算法(PNSGD)获得的隐私保障,并进行隐藏的中间更新。现有文献中的一项限制是,只研究了早期停止的PNSGD, 而对于在被洗掉的数据集中应用的更为广泛使用的PNSGD没有结果。此外,对于在网上收到新数据时如何减少注入的噪音,尚未提出任何计划。在这项工作中,我们首先证明,当每个样本大小的噪音固定为美元,但当增加美元时以预先设定的速度减少,将之视为一种隐私损失的趋同。我们随后分析了在线设置,并对注射噪音的规模提供了一种加速衰减计划,这也保证了隐私损失的趋同。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
专知会员服务
17+阅读 · 2020年9月6日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
193+阅读 · 2019年10月10日
已删除
将门创投
6+阅读 · 2019年11月21日
分布式并行架构Ray介绍
CreateAMind
9+阅读 · 2019年8月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
[DLdigest-8] 每日一道算法
深度学习每日摘要
4+阅读 · 2017年11月2日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2021年8月25日
Arxiv
4+阅读 · 2021年7月1日
VIP会员
相关VIP内容
专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
专知会员服务
17+阅读 · 2020年9月6日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
193+阅读 · 2019年10月10日
相关资讯
已删除
将门创投
6+阅读 · 2019年11月21日
分布式并行架构Ray介绍
CreateAMind
9+阅读 · 2019年8月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
[DLdigest-8] 每日一道算法
深度学习每日摘要
4+阅读 · 2017年11月2日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员