Message-oriented and robotics middleware play an important role in facilitating robot control, abstracting complex functionality and unifying communication patterns across networks of sensors and devices. However, the use of multiple middleware frameworks presents a challenge in integrating different robots within a single system. To address this challenge, we present Wrapyfi, a Python wrapper supporting multiple message-oriented and robotics middleware, including ZeroMQ, YARP, ROS, and ROS 2. Wrapyfi also provides plugins for exchanging deep learning framework data, without additional encoding or preprocessing steps. Using Wrapyfi eases the development of scripts that run on multiple machines, thereby enabling cross-platform communication and workload distribution. We evaluated Wrapyfi in practical settings by conducting two user studies, using multiple sensors transmitting readings to deep learning models, and using robots such as the iCub and Pepper via different middleware. The results demonstrated Wrapyfi's usability in practice allowing for multi-middleware exchanges, and controlled process distribution in a real-world setting. More importantly, we showcase Wrapify's most prominent features by bridging interactions between sensors, deep learning models, and robotic platforms.
翻译:信息导向器和机器人中继器在推动机器人控制、提取复杂功能和统一传感器和装置网络之间通信模式方面发挥了重要作用。 但是,使用多个中继器框架在将不同机器人整合到一个单一系统方面提出了挑战。为了应对这一挑战,我们介绍了支持多信息导向器和机器人中继器的Python包装器Paldyfi, 包括ZeroMQ、YARP、ROS和ROS 2. 帕内菲还提供插件,用于交换深学习框架数据,而无需额外的编码或预处理步骤。使用包内菲可以方便多台机器运行的脚本的开发,从而有利于跨平台通信和工作量分配。我们通过开展两个用户研究,使用多个传感器将阅读传递到深层学习模型,以及使用iCub和焦贝等机器人,在实用环境中评估了包内菲。结果显示包里菲在实践上的可用性,允许多中继器交换,以及在现实环境中有控制的流程分布。更重要的是,我们通过连接传感器、深层学习模型和机器人之间的互动,展示了最突出的特征。