Uncertainty in data is certainly one of the main problems in epidemiology, as shown by the recent COVID-19 pandemic. The need for efficient methods capable of quantifying uncertainty in the mathematical model is essential in order to produce realistic scenarios of the spread of infection. In this paper, we introduce a bi-fidelity approach to quantify uncertainty in spatially dependent epidemic models. The approach is based on evaluating a high-fidelity model on a small number of samples properly selected from a large number of evaluations of a low-fidelity model. In particular, we will consider the class of multiscale transport models recently introduced in Bertaglia, Boscheri, Dimarco & Pareschi, Math. Biosci. Eng. (2021) and Boscheri, Dimarco & Pareschi, Math. Mod. Meth. App. Scie. (2021) as the high-fidelity reference and use simple two-velocity discrete models for low-fidelity evaluations. Both models share the same diffusive behavior and are solved with ad-hoc asymptotic-preserving numerical discretizations. A series of numerical experiments confirm the validity of the approach.
翻译:正如最近的COVID-19大流行所显示的,数据不确定性无疑是流行病学的主要问题之一。必须采用能够量化数学模型不确定性的高效方法,才能产生传染蔓延的现实情景。在本文件中,我们采用了双信度方法来量化空间依赖型流行病模型的不确定性。该方法基于对从大量低忠诚模型评价中适当挑选的少量样本的高度忠诚模型的评价。特别是,我们将考虑最近在Bertaglia、Boscheri、Dimarco和Pareschi、Matth.Biosci.Eng.(2021年)和Boscheri、Dimarco和Pareschi、Matth.mod.Math.App.Scie.(2021年)中采用的多信度参考标准,并使用简单的双高速离散模型来进行低忠诚评估。两种模型都具有相同的差异性行为,并且与保留数字分解方法的自动分解方法解。一系列数字实验证实了数字实验的有效性。