Despite high-profile successes in the field of Artificial Intelligence, machine-driven technologies still suffer important limitations, particularly for complex tasks where creativity, planning, common sense, intuition, or learning from limited data is required. These limitations motivate effective methods for human-machine collaboration. Our work makes two primary contributions. We thoroughly experiment with an artificial prediction market model to understand the effects of market parameters on model performance for benchmark classification tasks. We then demonstrate, through simulation, the impact of exogenous agents in the market, where these exogenous agents represent primitive human behaviors. This work lays the foundation for a novel set of hybrid human-AI machine learning algorithms.
翻译:尽管在人造情报领域取得了引人注目的成功,但机器驱动技术仍然受到重大限制,特别是在复杂的任务方面,需要创造性、规划、常识、直觉、直觉或从有限的数据中学习。这些限制促使采取有效的人类机械合作方法。我们的工作作出了两个主要贡献。我们彻底试验了一种人工预测市场模型,以了解市场参数对基准分类任务模型业绩的影响。然后,我们通过模拟,展示了这些外源物剂代表原始人类行为的市场外源物剂的影响。这项工作为一套新型的人类-AI机器学习算法奠定了基础。