To build commercial robots, skid-steering mechanical design is of increased popularity due to its manufacturing simplicity and unique mechanism. However, these also cause significant challenges on software and algorithm design, especially for the pose estimation (i.e., determining the robot's rotation and position) of skid-steering robots, since they change their orientation with an inevitable skid. To tackle this problem, we propose a probabilistic sliding-window estimator dedicated to skid-steering robots, using measurements from a monocular camera, the wheel encoders, and optionally an inertial measurement unit (IMU). Specifically, we explicitly model the kinematics of skid-steering robots by both track instantaneous centers of rotation (ICRs) and correction factors, which are capable of compensating for the complexity of track-to-terrain interaction, the imperfectness of mechanical design, terrain conditions and smoothness, etc. To prevent performance reduction in robots' long-term missions, the time- and location- varying kinematic parameters are estimated online along with pose estimation states in a tightly-coupled manner. More importantly, we conduct in-depth observability analysis for different sensors and design configurations in this paper, which provides us with theoretical tools in making the correct choice when building real commercial robots. In our experiments, we validate the proposed method by both simulation tests and real-world experiments, which demonstrate that our method outperforms competing methods by wide margins.


翻译:为了建设商业机器人,滑板机械设计因其制造简单和独特的机制而越来越受欢迎。然而,这也给软件和算法设计带来重大挑战,特别是滑板机器人的构成估计(即确定机器人的轮换和位置)和校正因素,因为它们会以不可避免的滑雪方式改变方向。为了解决这个问题,我们提议为滑雪机器人专门设置一个游滑风测地,使用单镜相机、轮式编程器和可选惯性测量单位(IMU)的测量方法,防止滑雪机的性能下降。具体地说,我们明确通过轨道瞬间旋转中心(ICRs)和校正因素来模拟滑动机器人的运动运动,因为这些因素能够弥补轨对地对地互动的复杂性、机械设计不完善、地形条件和光滑等等。为了防止机器人的长期任务、时间和地点差异性边际参数的性能下降,我们用一个清晰的模拟方法在网络上估算出滑雪机器人的运动运动动力,同时用精确的模拟状态进行我们真实的实验方法进行模拟, 更重要的是,我们用这种精确的实验方法来展示我们真实的造型的实验方法 。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
76+阅读 · 2020年7月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
144+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
168+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
90+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员