Obtaining high resolution images from low resolution data with clipped noise is algorithmically challenging due to the ill-posed nature of the problem. So far such problems have hardly been tackled, and the few existing approaches use simplistic regularisers. We show the usefulness of two adaptive regularisers based on anisotropic diffusion ideas: Apart from evaluating the classical edge-enhancing anisotropic diffusion regulariser, we introduce a novel non-local one with one-sided differences and superior performance. It is termed sector diffusion. We combine it with all six variants of the classical super-resolution observational model that arise from permutations of its three operators for warping, blurring, and downsampling. Surprisingly, the evaluation in a practically relevant noisy scenario produces a different ranking than the one in the noise-free setting in our previous work (SSVM 2017).
翻译:从低分辨率数据中获取高分辨率图像,并使用剪贴噪音,由于问题的性质不正确,这在逻辑上具有挑战性。到目前为止,这些问题还没有得到解决,而且现有的方法很少使用简单化的常规化。我们展示了两种基于厌食扩散理念的适应性常规化器的有用性:除了评估古典的边缘增强厌食扩散常规化器之外,我们还引入了一种具有片面差异和优异性能的非局部性新奇的新型非局部性。它被称为部门扩散。我们将其与传统超分辨率观测模型的所有六种变体结合起来,这些模型来自三个操作器的变异,用于扭曲、模糊和下层取样。令人惊讶的是,在几乎相关的噪音情景下进行的评估产生了不同于我们先前工作(SSVM 2017)无噪音环境中的排序。