Norm discovery is important for understanding and reasoning about the acceptable behaviors and potential violations in human communication and interactions. We introduce NormSage, a framework for addressing the novel task of conversation-grounded multi-lingual, multi-cultural norm discovery, based on language model prompting and self-verification. NormSAGE leverages the expressiveness and implicit knowledge of the pretrained GPT-3 language model backbone, to elicit knowledge about norms through directed questions representing the norm discovery task and conversation context. It further addresses the risk of language model hallucination with a self-verification mechanism ensuring that the norms discovered are correct and are substantially grounded to their source conversations. Evaluation results show that our approach discovers significantly more relevant and insightful norms for conversations on-the-fly compared to baselines (>10+% in Likert scale rating). The norms discovered from Chinese conversation are also comparable to the norms discovered from English conversation in terms of insightfulness and correctness (<3% difference). In addition, the culture-specific norms are promising quality, allowing for 80% accuracy in culture pair human identification. Finally, our grounding process in norm discovery self-verification can be extended for instantiating the adherence and violation of any norm for a given conversation on-the-fly, with explainability and transparency. NormSAGE achieves an AUC of 95.4% in grounding, with natural language explanation matching human-written quality.


翻译:对理解和推理人类交流和互动中的可接受行为和潜在侵犯行为而言,诺姆发现非常重要。我们引入了诺姆Sage(NormSage),这是应对基于对话的多语言、多文化规范发现这一新任务的框架,以语言模式促进和自我验证为基础。诺姆SAGE利用了经过预先训练的GPT-3语言模型主干体的清晰和隐含知识,通过代表常规发现任务和对话背景的定向问题,获得关于规范的知识。它进一步用自我核实机制解决语言模式幻觉的风险,确保所发现的准则正确,并在很大程度上根植于其源性对话。评价结果表明,我们的方法发现,与基线相比,在空中对话中发现的相关性和深刻得多(>10 ⁇ 在Irrirt等级评级中)。 从中国对话中发现的规范也与英语对话中发现的清晰和正确性规范( < 3%的差异) 相仿。此外,具体文化规范的质量是很有希望的,允许在文化识别方面达到80%的准确性。最后,我们在标准发现自我核实过程中发现自我核实的规范过程可以扩展为可追溯性解释的准确性。95度,对原则进行精确性解释。

0
下载
关闭预览

相关内容

NeurlPS 2022 | 自然语言处理相关论文分类整理
专知会员服务
48+阅读 · 2022年10月2日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
11+阅读 · 2020年12月2日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员