In Agile software development, user stories play a vital role in capturing and conveying end-user needs, prioritizing features, and facilitating communication and collaboration within development teams. However, automated methods for evaluating user stories require training in NLP tools and can be time-consuming to develop and integrate. This study explores using ChatGPT for user story quality evaluation and compares its performance with an existing benchmark. Our study shows that ChatGPT's evaluation aligns well with human evaluation, and we propose a ``best of three'' strategy to improve its output stability. We also discuss the concept of trustworthiness in AI and its implications for non-experts using ChatGPT's unprocessed outputs. Our research contributes to understanding the reliability and applicability of AI in user story evaluation and offers recommendations for future research.
翻译:暂无翻译