NER model has achieved promising performance on standard NER benchmarks. However, recent studies show that previous approaches may over-rely on entity mention information, resulting in poor performance on out-of-vocabulary (OOV) entity recognition. In this work, we propose MINER, a novel NER learning framework, to remedy this issue from an information-theoretic perspective. The proposed approach contains two mutual information-based training objectives: i) generalizing information maximization, which enhances representation via deep understanding of context and entity surface forms; ii) superfluous information minimization, which discourages representation from rote memorizing entity names or exploiting biased cues in data. Experiments on various settings and datasets demonstrate that it achieves better performance in predicting OOV entities.
翻译:NER模式在标准净入学率基准方面已经取得了有希望的业绩,但是,最近的研究表明,以往的做法可能过分依赖实体提及的信息,导致校外(OOOV)实体的确认工作表现不佳。在这项工作中,我们建议一个全新的NER学习框架MINER从信息理论角度解决这个问题。拟议方法包含两个基于信息的相互培训目标:(一) 信息最大化普遍化,通过深入了解背景和实体表面形式加强代表性;(二) 将多余的信息减少到最低程度,这不利于代表实体名称的腐蚀或利用数据中的偏差提示。关于各种设置和数据集的实验表明,它在预测OOOV实体方面取得了更好的业绩。