In-memory key-value stores provide consistent low-latency access to all objects which is important for interactive large-scale applications like social media networks or online graph analytics and also opens up new application areas. But, when storing the data in RAM on thousands of servers one has to consider server failures. Only a few in-memory key-value stores provide automatic online recovery of failed servers. The most prominent example of these systems is RAMCloud. Another system with sophisticated fault-tolerance mechanisms is DXRAM which is optimized for small data objects. In this report, we detail the remote replication process which is based on logs, investigate selection strategies for the reorganization of these logs and evaluate the reorganization performance for sequential, random, zipf and hot-and-cold distributions in DXRAM. This is also the first time DXRAM's backup system is evaluated with high speed I/O devices, specifically with 56 GBit/s InfiniBand interconnect and PCI-e SSDs. Furthermore, we discuss the copyset replica distribution to reduce the probability for data loss and the adaptations to the original approach for DXRAM.


翻译:模拟关键值仓库对所有对象提供持续的低延迟访问,这对于社交媒体网络或在线图解分析等交互式大型应用非常重要,并且打开新的应用程序区域。 但是,在将数据存储在数千个服务器上存储存储在存储存储器中的数据时,必须考虑服务器故障。 只有少数模拟关键值仓库可以自动在线恢复失灵服务器。这些系统最突出的例子是RAMCloud。另一个有复杂过错容忍机制的系统是DXRAM,这个系统对小数据对象来说是最佳的。我们在本报告中详细介绍了基于日志的远程复制进程,调查这些日志重组的选择策略,并评估DXRAM的顺序、随机、拉链和冷热分布的重组性能。这也是首次用高速I/O设备对DXRAM的备份系统进行评估,特别是用56 GBit/s Infiniband 互连和 PCI-e SDDSD设备。此外,我们讨论了复制复制的复制分发过程,以减少数据损失概率,并调整DRAMX的原始方法。

0
下载
关闭预览

相关内容

因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】(Keras)LSTM多元时序预测教程
机器学习研究会
24+阅读 · 2017年8月14日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Advances in Online Audio-Visual Meeting Transcription
Arxiv
4+阅读 · 2019年12月10日
Clustered Object Detection in Aerial Images
Arxiv
5+阅读 · 2019年8月27日
Neural Speech Synthesis with Transformer Network
Arxiv
5+阅读 · 2019年1月30日
A Probe into Understanding GAN and VAE models
Arxiv
9+阅读 · 2018年12月13日
Arxiv
5+阅读 · 2015年9月14日
VIP会员
相关VIP内容
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
相关资讯
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】(Keras)LSTM多元时序预测教程
机器学习研究会
24+阅读 · 2017年8月14日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
相关论文
Top
微信扫码咨询专知VIP会员