Diabetes prevalence is on the rise in the UK, and for public health strategy, estimation of relative disease risk and subsequent mapping is important. We consider an application to London data on diabetes prevalence and mortality. In order to improve the estimation of relative risks we analyse jointly prevalence and mortality data to ensure borrowing strength over the two outcomes. The available data involves two spatial frameworks, areas (middle level super output areas, MSOAs), and general practices (GPs) recruiting patients from several areas. This raises a spatial misalignment issue that we deal with by employing the multiple membership principle. Specifically we translate area spatial effects to explain GP practice prevalence according to proportions of GP populations resident in different areas. A sparse implementation in Stan of both the MCAR and GMCAR allows the comparison of these bivariate priors as well as exploring the different implications for the mapping patterns for both outcomes. The necessary causal precedence of diabetes prevalence over mortality allows a specific conditionality assumption in the GMCAR, not always present in the context of disease mapping.


翻译:糖尿病发病率在英国呈上升趋势,对于公共卫生战略来说,估计相对疾病风险和随后的绘图非常重要。我们考虑对伦敦糖尿病流行率和死亡率数据的应用。为了改进对相对风险的估计,我们联合分析流行率和死亡率数据,以确保在这两个结果的基础上借款的强度。现有数据涉及两个空间框架:地区(中层超级产出区,MOSOAs)和从几个地区招募病人的一般做法(GPs),这造成了空间失调问题,我们通过采用多成员原则来处理这一问题。具体地说,我们翻译了地区空间效应,以根据不同地区GP人口的比例解释GP做法的流行程度。在斯坦州实施的MCAR和GMCAR都很少,使得能够比较这两个结果的双重前科,并探索对绘图模式的不同影响。糖尿病流行率高于死亡率的必要因果关系使得在GMCAR中可以作出具体的条件性假设,在疾病测绘中并不总是出现这种假设。

0
下载
关闭预览

相关内容

《常微分方程》笔记,419页pdf
专知会员服务
73+阅读 · 2020年8月2日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
已删除
将门创投
5+阅读 · 2017年11月22日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年2月5日
Arxiv
0+阅读 · 2021年2月4日
Arxiv
3+阅读 · 2016年2月24日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
已删除
将门创投
5+阅读 · 2017年11月22日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员