E-commerce queries are often short and ambiguous. Consequently, query understanding often uses query rewriting to disambiguate user-input queries. While using e-commerce search tools, users tend to enter multiple searches, which we call context, before purchasing. These history searches contain contextual insights about users' true shopping intents. Therefore, modeling such contextual information is critical to a better query rewriting model. However, existing query rewriting models ignore users' history behaviors and consider only the instant search query, which is often a short string offering limited information about the true shopping intent. We propose an end-to-end context-aware query rewriting model to bridge this gap, which takes the search context into account. Specifically, our model builds a session graph using the history search queries and their contained words. We then employ a graph attention mechanism that models cross-query relations and computes contextual information of the session. The model subsequently calculates session representations by combining the contextual information with the instant search query using an aggregation network. The session representations are then decoded to generate rewritten queries. Empirically, we demonstrate the superiority of our method to state-of-the-art approaches under various metrics. On in-house data from an online shopping platform, by introducing contextual information, our model achieves 11.6% improvement under the MRR (Mean Reciprocal Rank) metric and 20.1% improvement under the HIT@16 metric (a hit rate metric), in comparison with the best baseline method (Transformer-based model).
翻译:电子商务查询往往很短,也很模糊。 因此, 查询理解经常使用查询重写来模糊用户- 投入查询。 在使用电子商务搜索工具时, 用户往往在购买之前会进入多种搜索, 我们称之为背景。 这些历史搜索包含用户真正购物意图的背景洞察。 因此, 模拟这种背景信息对于更好的查询重写模式至关重要。 但是, 现有的查询重写模式忽略了用户的历史行为, 并且只考虑即时查询, 而这往往是一小串提供真实购物意图有限信息的短串查询。 我们提议了一个端到端的背景觉查询重写模式, 以弥补这一差距, 并顾及搜索背景。 具体地说, 我们的模型利用历史搜索查询及其包含的字眼来构建一个会话图。 我们随后采用了一个图形关注机制, 模拟交叉关系, 并整理会议的背景信息。 模型随后通过使用汇总网络将背景信息与即时搜索示范查询相结合, 将会议演示解码用于产生重写查询。 我们的“ 端到端对上 ” 边” 重写” 重写“, 我们的比较方法优于“ 上“ 上“ ” 矩阵” 矩阵” 的“,, 在“ HR 上, 在“ 的“ 上” 的“ 的“ ” 中, 在“ ” 里” 里 里” 里 里 里 里 里 里 里 里 里 里, 里 里 里, 里, 里 里 里 里 里 里 里 里 里 里 里 里 里 里 里 里 里 里 里 里 里 里 里 里 里 里 里 里 里 里 里 里 里 里 里 里 里 里 里 里 里 里 里 里 里 里 里 里 里 里 里 里 里 里 里 里 里 里 里 里 里 里 里 里 里 里 里 里 里 里 里 里 里 里 里 里 里 里 里 里 里 里 里 里 里 里 里