While machine learning techniques are being applied to various fields for their exceptional ability to find complex relations in large datasets, the strengthening of regulations on data ownership and privacy is causing increasing difficulty in its application to medical data. In light of this, Federated Learning has recently been proposed as a solution to train on private data without breach of confidentiality. This conservation of privacy is particularly appealing in the field of healthcare, where patient data is highly confidential. However, many studies have shown that its assumption of Independent and Identically Distributed data is unrealistic for medical data. In this paper, we propose Personalized Federated Cluster Models, a hierarchical clustering-based FL process, to predict Major Depressive Disorder severity from Heart Rate Variability. By allowing clients to receive more personalized model, we address problems caused by non-IID data, showing an accuracy increase in severity prediction. This increase in performance may be sufficient to use Personalized Federated Cluster Models in many existing Federated Learning scenarios.


翻译:虽然由于在大型数据集中发现复杂关系的超常能力,机械学习技术正应用于各个领域,因为其能在大型数据集中找到复杂的关系,但数据所有权和隐私条例的加强在医疗数据应用方面造成越来越多的困难。有鉴于此,最近有人提议将联邦学习作为在不违反保密规定的情况下培训私人数据的解决办法。这种保护隐私在保健领域特别具有吸引力,因为病人数据高度保密。然而,许多研究表明,它假定独立和同种分布的数据对医疗数据是不现实的。在本文件中,我们提议采用个性化联邦分组模型,一个基于分级集群的FL程序,从心脏速变异性中预测重大压抑性障碍严重性。我们允许客户获得更个性化模型,从而解决非IID数据造成的问题,显示强度预测的准确性提高。这种性提高可能足以在许多现有的联邦学习假设中使用个化联邦组合模型。

0
下载
关闭预览

相关内容

联邦学习(Federated Learning)是一种新兴的人工智能基础技术,在 2016 年由谷歌最先提出,原本用于解决安卓手机终端用户在本地更新模型的问题,其设计目标是在保障大数据交换时的信息安全、保护终端数据和个人数据隐私、保证合法合规的前提下,在多参与方或多计算结点之间开展高效率的机器学习。其中,联邦学习可使用的机器学习算法不局限于神经网络,还包括随机森林等重要算法。联邦学习有望成为下一代人工智能协同算法和协作网络的基础。
最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
86+阅读 · 2020年12月2日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
Federated Learning: 架构
AINLP
4+阅读 · 2020年9月20日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
已删除
将门创投
10+阅读 · 2019年3月6日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Arxiv
0+阅读 · 2021年10月8日
Arxiv
0+阅读 · 2021年10月7日
Arxiv
7+阅读 · 2021年4月30日
Arxiv
10+阅读 · 2021年3月30日
Arxiv
3+阅读 · 2020年5月1日
Arxiv
45+阅读 · 2019年12月20日
VIP会员
相关VIP内容
最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
86+阅读 · 2020年12月2日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
相关资讯
Federated Learning: 架构
AINLP
4+阅读 · 2020年9月20日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
已删除
将门创投
10+阅读 · 2019年3月6日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
相关论文
Arxiv
0+阅读 · 2021年10月8日
Arxiv
0+阅读 · 2021年10月7日
Arxiv
7+阅读 · 2021年4月30日
Arxiv
10+阅读 · 2021年3月30日
Arxiv
3+阅读 · 2020年5月1日
Arxiv
45+阅读 · 2019年12月20日
Top
微信扫码咨询专知VIP会员