We define inductively the opposites of a weak globular $\omega$\-category with respect to a set of dimensions, and we show that the properties of being free on a globular set or a computad are preserved under forming opposites. We then provide a new description of the hom functor on $\omega$\-categories, and we show that it admits a left adjoint that we construct explicitly and call the suspension functor. We also show that the hom functor preserves the property of being free on computad, and that the opposites of a hom $\omega$\-category are hom $\omega$\-categories of opposites of the original $\omega$\-category.
翻译:暂无翻译