We propose a semantically-aware novel paradigm to perform image extrapolation that enables the addition of new object instances. All previous methods are limited in their capability of extrapolation to merely extending the already existing objects in the image. However, our proposed approach focuses not only on (i) extending the already present objects but also on (ii) adding new objects in the extended region based on the context. To this end, for a given image, we first obtain an object segmentation map using a state-of-the-art semantic segmentation method. The, thus, obtained segmentation map is fed into a network to compute the extrapolated semantic segmentation and the corresponding panoptic segmentation maps. The input image and the obtained segmentation maps are further utilized to generate the final extrapolated image. We conduct experiments on Cityscapes and ADE20K-bedroom datasets and show that our method outperforms all baselines in terms of FID, and similarity in object co-occurrence statistics.


翻译:我们提出一个具有语义意识的新范例,以进行图像外推,从而能够增加新的物体实例。所有先前的方法都限制其外推能力,仅限于扩展图像中已经存在的物体。然而,我们提议的方法不仅侧重于(一)扩展已经存在的物体,而且侧重于(二)根据上下文在扩展区域添加新的物体。为此,对于一个特定图像,我们首先使用最先进的语义分解方法获取物体分割图。因此,获得的分解图被输入到一个网络中,以计算外推语义分解和相应的泛光分解图。输入图像和获得的分解图被进一步用于生成最后的外推图。我们在城市景和ADE20K-卧室数据集上进行实验,并显示我们的方法在FID方面超越了所有基线,在对象共相近性统计方面也超越了所有基准。

0
下载
关闭预览

相关内容

专知会员服务
8+阅读 · 2020年12月10日
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
95+阅读 · 2020年5月31日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Arxiv
0+阅读 · 2021年10月21日
Arxiv
1+阅读 · 2021年10月17日
Deep Co-Training for Semi-Supervised Image Segmentation
Arxiv
4+阅读 · 2018年6月1日
VIP会员
相关VIP内容
专知会员服务
8+阅读 · 2020年12月10日
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
95+阅读 · 2020年5月31日
相关资讯
Top
微信扫码咨询专知VIP会员