This paper presents an integrated system for performing precision harvesting missions using a walking harvester. Our harvester performs the challenging task of autonomous navigation and tree grabbing in a confined, GPS denied forest environment. Strategies for mapping, localization, planning, and control are proposed and integrated into a fully autonomous system. The mission starts with a human or a mobile robot mapping the area of interest using a custom-made sensor module. Subsequently, a human expert or a data-supported algorithm selects the trees for harvesting. The sensor module is then mounted on the machine and used for localization within the given map. A planning algorithm searches for both an approach pose and a path in a single path planning problem. We design a path following controller leveraging the walking harvester's capabilities for negotiating rough terrain. Upon reaching the approach pose, the machine grabs a tree with a general-purpose gripper. This process repeats for all the trees selected by the operator (algorithm). Our system has been tested on a testing field with tree trunks and in a natural forest. To the best of our knowledge, this is the first time this level of autonomy has been shown on a full-size hydraulic machine operating in a realistic environment.
翻译:本文展示了使用步行采集器执行精密采集任务的综合系统。 我们的采集器在封闭的、GPS被剥夺的森林环境中执行自主导航和攫取树木的艰巨任务。 提出并整合了绘图、 本地化、 规划和控制战略。 任务从人或移动机器人使用定制的传感器模块绘制感兴趣区域图开始。 随后, 由一位人类专家或数据支持的算法选择采伐的树木。 传感器模块随后安装在机器上, 并在给定的地图中用于本地化。 规划算法搜索一种方法, 并寻找一条单一路径规划问题的路径。 我们设计了一条遵循控制器的方法, 利用行走采集器的能力来谈判粗地。 到达这个位置后, 机器抓住一棵树, 并用通用的控制器。 这一过程将重复操作器所选择的所有树木( algorithm) 。 我们的系统在与树干和天然森林的测试场上进行了测试。 据我们所知, 这是第一次在现实环境中运行的全尺寸的液压机上显示这种自主水平 。