Melanoma is a leading cause of deaths due to skin cancer deaths and hence, early and effective diagnosis of melanoma is of interest. Current approaches for automated diagnosis of melanoma either use pattern recognition or analytical recognition like ABCDE (asymmetry, border, color, diameter and evolving) criterion. In practice however, a differential approach wherein outliers (ugly duckling) are detected and used to evaluate nevi/lesions. Incorporation of differential recognition in Computer Aided Diagnosis (CAD) systems has not been explored but can be beneficial as it can provide a clinical justification for the derived decision. We present a method for identifying and quantifying ugly ducklings by performing Intra-Patient Comparative Analysis (IPCA) of neighboring nevi. This is then incorporated in a CAD system design for melanoma detection. This design ensures flexibility to handle cases where IPCA is not possible. Our experiments on a public dataset show that the outlier information helps boost the sensitivity of detection by at least 4.1 % and specificity by 4.0 % to 8.9 %, depending on the use of a strong (EfficientNet) or moderately strong (VGG or ResNet) classifier.
翻译:皮肤癌死亡是造成皮肤癌死亡的主要原因之一,因此,早期和有效诊断乳腺瘤是引人注意的原因。目前自动诊断乳腺瘤的方法要么使用ABCDE(不对称、边框、颜色、直径和演变)标准等模式识别或分析识别方法,例如ABCDE(非对称、边框、颜色、直径和演变)标准。然而,在实践中,一种差异方法是检测外围物(大鸭子),并用来评价内阴性/内分泌。在计算机辅助诊断系统(CAD)中引入差异识别方法尚未探索,但可能有益,因为它可以为衍生的决定提供临床上的理由。我们提出了一个方法,通过对邻系内系进行内部与面比较分析(IPCACAD)来识别和量化丑恶鸭子。然后,该方法被纳入CAD系统用于检测乳腺瘤。这一设计确保了处理无法进行IPCA的案件的灵活性。我们对公共数据集的实验表明,外部信息有助于至少4.1%和特性的敏感度提高4.0%至8.9%,这取决于是否使用强(VffGU)或中性。