Software Engineering (SE) communities such as Stack Overflow have become unwelcoming, particularly through members' use of offensive language. Research has shown that offensive language drives users away from active engagement within these platforms. This work aims to explore this issue more broadly by investigating the nature of offensive language in comments posted by users in four prominent SE platforms - GitHub, Gitter, Slack and Stack Overflow (SO). It proposes an approach to detect and classify offensive language in SE communities by adopting natural language processing and deep learning techniques. Further, a Conflict Reduction System (CRS), which identifies offence and then suggests what changes could be made to minimize offence has been proposed. Beyond showing the prevalence of offensive language in over 1 million comments from four different communities which ranges from 0.07% to 0.43%, our results show promise in successful detection and classification of such language. The CRS system has the potential to drastically reduce manual moderation efforts to detect and reduce offence in SE communities.


翻译:Stack overflow (SE) 等软件工程(SE) 群落变得不妥,特别是通过成员使用攻击性语言。研究表明,攻击性语言驱使用户远离这些平台内的积极参与。这项工作的目的是更广泛地探讨这一问题,调查SE四个重要平台 -- -- GitHub、Gitter、Slack和Stack overflow (SO) -- -- 用户在四个主要平台 -- -- GitHub、Gitter、Slack和Stack overflow (SE) 上的评论中发表的攻击性语言的性质。它建议采用一种方法,通过自然语言处理和深层学习技术,在SE社区中发现和分类攻击性语言。此外,还提出了冲突减少系统,该系统查明了犯罪,然后提出了为尽量减少犯罪可以作哪些修改的建议。除了从0.07%到0.43%不等的四个不同社区在100多万次评论中显示攻击性语言的流行性之外,我们的结果显示成功发现和分类这种语言的可能性。CRS系统有可能大大减少在SEE社区中人工调节和减少犯罪。

0
下载
关闭预览

相关内容

知识图谱推理,50页ppt,Salesforce首席科学家Richard Socher
专知会员服务
109+阅读 · 2020年6月10日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
金融领域自然语言处理研究资源大列表
专知
13+阅读 · 2020年2月27日
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
人工智能 | NIPS 2019等国际会议信息8条
Call4Papers
7+阅读 · 2019年3月21日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
自然语言处理 (NLP)资源大全
机械鸡
35+阅读 · 2017年9月17日
最佳实践:深度学习用于自然语言处理(三)
待字闺中
3+阅读 · 2017年8月20日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Natural Language-guided Programming
Arxiv
0+阅读 · 2021年8月11日
Deep Learning for Deepfakes Creation and Detection
Arxiv
6+阅读 · 2019年9月25日
Object Detection in 20 Years: A Survey
Arxiv
48+阅读 · 2019年5月13日
VIP会员
相关资讯
金融领域自然语言处理研究资源大列表
专知
13+阅读 · 2020年2月27日
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
人工智能 | NIPS 2019等国际会议信息8条
Call4Papers
7+阅读 · 2019年3月21日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
自然语言处理 (NLP)资源大全
机械鸡
35+阅读 · 2017年9月17日
最佳实践:深度学习用于自然语言处理(三)
待字闺中
3+阅读 · 2017年8月20日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员