Analysis of the fetal heart rate during pregnancy is essential for monitoring the proper development of the fetus. Current fetal heart monitoring techniques lack the accuracy in fetal heart rate monitoring and features acquisition, resulting in diagnostic medical issues. The challenge lies in the extraction of the fetal ECG from the mother's ECG during pregnancy. This approach has the advantage of being a reliable and non-invasive technique. For this aim, we propose in this paper a wavelet/multi-wavelet method allowing to extract perfectly the feta ECG parameters from the abdominal mother ECG. The method is essentially due to the exploitation of Clifford wavelets as recent variants in the field. We prove that these wavelets are more efficient and performing against classical ones. The experimental results are therefore due to two basic classes of wavelets and multi-wavelets. A first-class is the classical Haar Schauder, and a second one is due to Clifford valued wavelets and multi-wavelets. These results showed that wavelets/multiwavelets are already good bases for the FECG processing, provided that Clifford ones are the best.


翻译:胎儿在怀孕期间的心率分析是监测胎儿适当发育的关键。当前的胎儿心脏监测技术缺乏胎儿心率监测和性能获取的准确性,导致诊断医学问题。挑战在于孕期从母亲的ECG中提取胎儿脑电介质。这种方法具有可靠和非侵入性技术的优势。为此,我们在本文件中建议采用波盘/多波段方法,以便从腹部母亲ECG中完美提取胎儿ECG参数。这种方法主要是由于利用克里福德波子作为最近实地变异物。我们证明这些波子对古典波子更有效和性能。因此实验结果来自两种基本波子和多波段。一级是古典的Haar Schauder,第二级是克里福尔德有价值的波子和多波段。这些结果显示,波子/多波段已经是FECG处理的好基础,条件是克里福特波是最好的。

0
下载
关闭预览

相关内容

专知会员服务
46+阅读 · 2021年3月24日
专知会员服务
45+阅读 · 2020年10月31日
【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
49+阅读 · 2020年7月4日
【IJCAI2020】TransOMCS: 从语言图谱到常识图谱
专知会员服务
35+阅读 · 2020年5月4日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
无人机视觉挑战赛 | ICCV 2019 Workshop—VisDrone2019
PaperWeekly
7+阅读 · 2019年5月5日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
【推荐】TensorFlow手把手CNN实践指南
机器学习研究会
5+阅读 · 2017年8月17日
Learning in the Frequency Domain
Arxiv
11+阅读 · 2020年3月12日
Graph Analysis and Graph Pooling in the Spatial Domain
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
无人机视觉挑战赛 | ICCV 2019 Workshop—VisDrone2019
PaperWeekly
7+阅读 · 2019年5月5日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
【推荐】TensorFlow手把手CNN实践指南
机器学习研究会
5+阅读 · 2017年8月17日
Top
微信扫码咨询专知VIP会员