We propose an adapter based multi-domain Transformer based language model (LM) for Transformer ASR. The model consists of a big size common LM and small size adapters. The model can perform multi-domain adaptation with only the small size adapters and its related layers. The proposed model can reuse the full fine-tuned LM which is fine-tuned using all layers of an original model. The proposed LM can be expanded to new domains by adding about 2% of parameters for a first domain and 13% parameters for after second domain. The proposed model is also effective in reducing the model maintenance cost because it is possible to omit the costly and time-consuming common LM pre-training process. Using proposed adapter based approach, we observed that a general LM with adapter can outperform a dedicated music domain LM in terms of word error rate (WER).
翻译:我们为变换器 ASR 提出了一个基于适配器的多域变换器语言模型(LM ) 。 该模型包含一个大尺寸通用LM 和小尺寸变换器。 该模型只能对小尺寸变换器及其相关层进行多域适应。 拟议的模型可以重新使用完全微调的LM, 使用原始模型的所有层次进行微调。 提议的LM 可以通过为第一个域增加大约2%的参数和为第二个域之后增加13%的参数而扩大到新的域。 拟议的模型在降低模型维护成本方面也有效, 因为可以省略昂贵和耗时的通用LM 培训前过程。 使用拟议的适应器法, 我们观察到一个通用的LM 和适配器可以在字差率方面超过专用的LM 。