We present a new concentration of measure inequality for sums of independent bounded random variables, which we name a split-kl inequality. The inequality combines the combinatorial power of the kl inequality with ability to exploit low variance. While for Bernoulli random variables the kl inequality is tighter than the Empirical Bernstein, for random variables taking values inside a bounded interval and having low variance the Empirical Bernstein inequality is tighter than the kl. The proposed split-kl inequality yields the best of both worlds. We discuss an application of the split-kl inequality to bounding excess losses. We also derive a PAC-Bayes-split-kl inequality and use a synthetic example and several UCI datasets to compare it with the PAC-Bayes-kl, PAC-Bayes Empirical Bernstein, PAC-Bayes Unexpected Bernstein, and PAC-Bayes Empirical Bennett inequalities.
翻译:我们提出了一个新的衡量不平等的集中点,用于独立受约束随机变量的总和,我们称之为分裂-kl不平等。这种不平等将kl不平等的组合力量与利用低差异的能力结合起来。对于Bernoulli随机变量来说,kl不平等比Empirital Bernstein更严格,对于随机变量来说,Kl不平等比Empirital Bernstein在受约束的间隔内取值,且差异小的,Empiritical Bernstein不平等比kl更紧密。提议的分裂-kl不平等产生两个世界的最好结果。我们讨论了将分裂-kl不平等运用于捆绑过度损失的问题。我们还产生了一种PAC-Bayes-split-kl不平等,并用一个合成例子和几个UCI数据集来将其与PAC-Bayes-kl、PAC-Bayes Empircal Bernstein、PAC-Bayes Unut Bernstein和PAC-Bayes Epirical Bennett不平等进行比较。