Bug reports are common artefacts in software development. They serve as the main channel for users to communicate to developers information about the issues that they encounter when using released versions of software programs. In the descriptions of issues, however, a user may, intentionally or not, expose a vulnerability. In a typical maintenance scenario, such security-relevant bug reports are prioritised by the development team when preparing corrective patches. Nevertheless, when security relevance is not immediately expressed (e.g., via a tag) or rapidly identified by triaging teams, the open security-relevant bug report can become a critical leak of sensitive information that attackers can leverage to perform zero-day attacks. To support practitioners in triaging bug reports, the research community has proposed a number of approaches for the detection of security-relevant bug reports. In recent years, approaches in this respect based on machine learning have been reported with promising performance. Our work focuses on such approaches, and revisits their building blocks to provide a comprehensive view on the current achievements. To that end, we built a large experimental dataset and performed extensive experiments with variations in feature sets and learning algorithms. Eventually, our study highlights different approach configurations that yield best performing classifiers.


翻译:错误报告是软件开发中常见的手工艺品,是用户向开发者传递他们使用软件程序发布版本时遇到的问题的信息的主要渠道。但是,在问题说明中,用户可能有意或不故意暴露脆弱性。在典型的维护情况下,开发小组在准备纠正补丁时,优先考虑这种与安全有关的错误报告。然而,当安全相关性不立即表示(例如通过标签)或由三角小组迅速确定时,公开的安全相关错误报告可能成为攻击者可用来进行零天攻击的敏感信息的重大泄漏。为了支持进行错误报告三角化的操作者,研究界提出了检测与安全有关的错误报告的若干方法。近年来,根据机器学习报告的方法有良好的表现。我们的工作侧重于这些方法,并重新审视其构件,以提供关于当前成就的全面看法。为此,我们建立了一个大型的实验数据集,并进行了广泛的实验,在特征组合和学习算法上各有差异。最后,我们的研究突出了不同方法的配置,以产生最佳的演化者。

0
下载
关闭预览

相关内容

【UBC】高级机器学习课程,Advanced Machine Learning
专知会员服务
24+阅读 · 2021年1月26日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
专知会员服务
115+阅读 · 2019年12月24日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
计算机 | USENIX Security 2020等国际会议信息5条
Call4Papers
7+阅读 · 2019年4月25日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
计算机类 | ISCC 2019等国际会议信息9条
Call4Papers
5+阅读 · 2018年12月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Arxiv
9+阅读 · 2021年10月5日
Advances and Open Problems in Federated Learning
Arxiv
18+阅读 · 2019年12月10日
Deep Learning for Deepfakes Creation and Detection
Arxiv
6+阅读 · 2019年9月25日
Deep Learning for Generic Object Detection: A Survey
Arxiv
13+阅读 · 2018年9月6日
VIP会员
相关VIP内容
【UBC】高级机器学习课程,Advanced Machine Learning
专知会员服务
24+阅读 · 2021年1月26日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
专知会员服务
115+阅读 · 2019年12月24日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
计算机 | USENIX Security 2020等国际会议信息5条
Call4Papers
7+阅读 · 2019年4月25日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
计算机类 | ISCC 2019等国际会议信息9条
Call4Papers
5+阅读 · 2018年12月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Top
微信扫码咨询专知VIP会员