Along with advances in optical sensors is the common practice of building an imaging system with heterogeneous cameras. While high-resolution (HR) videos acquisition and analysis are benefited from hybrid sensors, the intrinsic characteristics of multiple cameras lead to an interesting motion transfer problem. Unfortunately, most of the existing methods provide no theoretical analysis and require intensive training data. In this paper, we propose an algorithm using time series analysis for motion transfer among multiple cameras. Specifically, we firstly identify seasonality in motion data and then build an addictive time series model to extract patterns that could be transferred across cameras. Our approach has a complete and clear mathematical formulation, thus being efficient and interpretable. Through quantitative evaluations on real-world data, we demonstrate the effectiveness of our method. Furthermore, our motion transfer algorithm could combine with and facilitate downstream tasks, e.g., enhancing pose estimation on LR videos with inherent patterns extracted from HR ones. Code is available at https://github.com/IndigoPurple/TSAMT.
翻译:光学传感器的进步是建立具有多种照相机的成像系统的常见做法。虽然高分辨率(HR)录像的获取和分析从混合传感器中受益,但多个照相机的内在特点导致一个有趣的运动转移问题。不幸的是,大多数现有方法没有提供理论分析,需要密集培训数据。在本文件中,我们建议采用一个算法,利用时间序列分析,在多照相机之间进行运动转移。具体地说,我们首先确定运动数据的季节性,然后建立一个可上瘾的时间序列模型,以提取可以跨照相机传输的模式。我们的方法有一个完整和清晰的数学公式,因而具有效率和可解释性。我们通过对真实世界数据进行定量评估,我们展示了我们的方法的有效性。此外,我们的运动转移算法可以与下游任务相结合,例如,用从HR摄取的固有模式加强对远程视频的外观估计。代码可在https://github.com/IndigoPurple/TSAMT上查阅。