Volumetric distributed Denial-of-Service (DDoS) attacks have become one of the most significant threats to modern telecommunication networks. However, most existing defense systems require that detection software operates from a centralized monitoring collector, leading to increased traffic load and delayed response. The recent advent of Data Plane Programmability (DPP) enables an alternative solution: threshold-based volumetric DDoS detection can be performed directly in programmable switches to skim only potentially hazardous traffic, to be analyzed in depth at the controller. In this paper, we first introduce the BACON data structure based on sketches, to estimate per-destination flow cardinality, and theoretically analyze it. Then we employ it in a simple in-network DDoS victim identification strategy, INDDoS, to detect the destination IPs for which the number of incoming connections exceeds a pre-defined threshold. We describe its hardware implementation on a Tofino-based programmable switch using the domain-specific P4 language, proving that some limitations imposed by real hardware to safeguard processing speed can be overcome to implement relatively complex packet manipulations. Finally, we present some experimental performance measurements, showing that our programmable switch is able to keep processing packets at line-rate while performing volumetric DDoS detection, and also achieves a high F1 score on DDoS victim identification.


翻译:对现代电信网络来说,数量分布式拒绝服务(DDoS)攻击已成为对现代电信网络的最重大威胁之一。然而,大多数现有防御系统都要求检测软件从中央监测收集器中操作,从而导致交通负荷增加和反应延迟。最近数据规划程序(DPP)的出现,使一个替代解决方案:基于临界量的量子体DDoS探测可以直接在程序开关中进行,只能进行潜在危险交通的小规模操作,由控制器进行深度分析。在本文中,我们首先采用基于素描的BACON数据结构,以估计每个目的地流动的基点,并从理论上分析这些数据结构。然后我们用它来使用简单在网络内DDoS受害者识别战略(INDDoS),以检测连接数量超过预先确定的阈点的目的地IP。我们用特定域P4语言来描述基于托菲诺的可编程开关的硬件实施情况,证明实际硬件对保障处理速度的限制可以克服到执行相对复杂的包装操纵。最后,我们提出一些实验性的工作成绩测量,同时进行数字式的FDS,在进行量级的测试,同时进行程序的升级。

0
下载
关闭预览

相关内容

【图与几何深度学习】Graph and geometric deep learning,49页ppt
Python分布式计算,171页pdf,Distributed Computing with Python
专知会员服务
108+阅读 · 2020年5月3日
强化学习最新教程,17页pdf
专知会员服务
180+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
CCF C类 | DSAA 2019 诚邀稿件
Call4Papers
6+阅读 · 2019年5月13日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
计算机类 | LICS 2019等国际会议信息7条
Call4Papers
3+阅读 · 2018年12月17日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
0+阅读 · 2021年6月4日
Arxiv
3+阅读 · 2018年6月18日
VIP会员
相关资讯
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
CCF C类 | DSAA 2019 诚邀稿件
Call4Papers
6+阅读 · 2019年5月13日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
计算机类 | LICS 2019等国际会议信息7条
Call4Papers
3+阅读 · 2018年12月17日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员