Pedestrian detection in the wild remains a challenging problem especially for scenes containing serious occlusion. In this paper, we propose a novel feature learning method in the deep learning framework, referred to as Feature Calibration Network (FC-Net), to adaptively detect pedestrians under various occlusions. FC-Net is based on the observation that the visible parts of pedestrians are selective and decisive for detection, and is implemented as a self-paced feature learning framework with a self-activation (SA) module and a feature calibration (FC) module. In a new self-activated manner, FC-Net learns features which highlight the visible parts and suppress the occluded parts of pedestrians. The SA module estimates pedestrian activation maps by reusing classifier weights, without any additional parameter involved, therefore resulting in an extremely parsimony model to reinforce the semantics of features, while the FC module calibrates the convolutional features for adaptive pedestrian representation in both pixel-wise and region-based ways. Experiments on CityPersons and Caltech datasets demonstrate that FC-Net improves detection performance on occluded pedestrians up to 10% while maintaining excellent performance on non-occluded instances.
翻译:在野外,对野外的突触探测仍是一个具有挑战性的问题,特别是对包含严重封闭的场景而言。在本文中,我们提议在深层学习框架内采用被称为地貌校准网(FC-Net)的新特色学习方法,在各种封闭处对行人进行适应性探测。FC-Net基于这样一种观察,即行人的可见部分是有选择性的,对探测具有决定性的决定性作用,并作为自我激活模块和地貌校准模块的自定特征学习框架加以实施。FC-Net以新的自我激活方式学习突出可见部分和抑制行人隐蔽部分的特征。FC-Net模块通过在不增加参数的情况下重新使用分类器重量来估计行人激活地图,因此产生了一种极为模糊的模式,以加强地貌的语义学,而FC模块则调整了以像素和基于区域的方式对适应性行人代表的演进特征进行校准。对城市-Person和Caltech数据集进行实验,以新的自我激活方式突出可见部分并抑制行人隐蔽部分。SA模块通过重新使用分解器来改进行踪测量10-clex-closels-clove-cles-cles-clois-clois-cloismlus-clationslations-clovelationslational-clations