Classic and deep learning-based generalized canonical correlation analysis (GCCA) algorithms seek low-dimensional common representations of data entities from multiple ``views'' (e.g., audio and image) using linear transformations and neural networks, respectively. When the views are acquired and stored at different locations, organizations and edge devices, computing GCCA in a distributed, parallel and efficient manner is well-motivated. However, existing distributed GCCA algorithms may incur prohitively high communication overhead. This work puts forth a communication-efficient distributed framework for both linear and deep GCCA under the maximum variance (MAX-VAR) paradigm. The overhead issue is addressed by aggressively compressing (via quantization) the exchanging information between the distributed computing agents and a central controller. Compared to the unquantized version, the proposed algorithm consistently reduces the communication overhead by about $90\%$ with virtually no loss in accuracy and convergence speed. Rigorous convergence analyses are also presented -- which is a nontrivial effort since no existing generic result from quantized distributed optimization covers the special problem structure of GCCA. Our result shows that the proposed algorithms for both linear and deep GCCA converge to critical points in a sublinear rate, even under heavy quantization and stochastic approximations. In addition, it is shown that in the linear MAX-VAR case, the quantized algorithm approaches a {\it global optimum} in a {\it geometric} rate -- if the computing agents' updates meet a certain accuracy level. Synthetic and real data experiments are used to showcase the effectiveness of the proposed approach.


翻译:传统的和深入的基于学习的、普遍的、普遍的、普遍的、普遍的、普遍的、普遍的、普遍的、普遍的、普遍的、普遍的、普遍的、普遍的、普遍的、普遍的、普遍的、普遍的、普遍的、普遍的、普遍的、普遍的、普遍的、普遍的、普遍的、普遍的、普遍的、普遍的、普遍的、普遍的、普遍的、普遍的、普遍的的、普遍的的、普遍的、普遍的的、普遍的、普遍的的、普遍的、普遍的、普遍的、普遍的、普遍的、普遍的的、普遍的的、普遍的的、普遍的的、从多种“VaX-VAR”模式下,分别利用线性变换和神经网络,对数据实体进行低维度的分布式的表示。当这些观点被收集并存储在不同的地点、组织和边缘设备存储时,以分布式的、平行的方式收集数据时,如果在最大程度的分布式的、分布式的、深度的和深层次的GSAA(MAX)模式下,则通过快速的、直线性、直径的、直径直径的、直径直方的、直径的、直径直方的、直径直方的、直径直方的、直方的、直方的、直方的、直方的、直方的、直方的、直方的、直方的、直方的、直方的、直方的、直方的、直方的、直方的、直方的、直方、直方、直方、直方、直方、直方、直方、直方、直方、直方、直方、直方、直方、直方、直方、直方、直方、直方、直方、直方、直方、直方、直方、直方、直方、直方、直方、直方、直方、直方、直方、直方、直方、直方、直方、直方、直方、直方、直方、直方、直方、直方、直方、直方、直方、直方、直方、直方、直方、直方、直方、直方、直方、直方、直方、直方、直方、直方、直方、直方、直方、直方、直方、直方、直方、直方、直方、直方、

0
下载
关闭预览

相关内容

专知会员服务
17+阅读 · 2020年9月6日
Python分布式计算,171页pdf,Distributed Computing with Python
专知会员服务
105+阅读 · 2020年5月3日
开源书:PyTorch深度学习起步
专知会员服务
49+阅读 · 2019年10月11日
强化学习最新教程,17页pdf
专知会员服务
168+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
已删除
将门创投
4+阅读 · 2018年11月6日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Arxiv
0+阅读 · 2021年11月16日
Generalized Out-of-Distribution Detection: A Survey
Arxiv
15+阅读 · 2021年10月21日
Arxiv
3+阅读 · 2017年12月1日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
已删除
将门创投
4+阅读 · 2018年11月6日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Top
微信扫码咨询专知VIP会员