We consider Wilson-Cowan-type models for the mathematical description of orientation-dependent Poggendorff-like illusions. Our modelling improves two previously proposed cortical-inspired approaches embedding the sub-Riemannian heat kernel into the neuronal interaction term, in agreement with the intrinsically anisotropic functional architecture of V1 based on both local and lateral connections. For the numerical realisation of both models, we consider standard gradient descent algorithms combined with Fourier-based approaches for the efficient computation of the sub-Laplacian evolution. Our numerical results show that the use of the sub-Riemannian kernel allows to reproduce numerically visual misperceptions and inpainting-type biases in a stronger way in comparison with the previous approaches.
翻译:我们考虑威尔逊-科万型模型,用于对依赖定向的波格根多夫的幻觉进行数学描述。我们的模型模型改进了两种先前提出的由皮层启发的方法,将里曼尼亚热内核嵌入神经互动术语,并与基于本地和横向连接的内在的V1 厌异功能结构相一致。关于这两个模型的数值实现,我们考虑标准梯度下降算法和基于Fourier的法,以有效计算亚拉帕西亚进化。我们的数字结果显示,使用里曼尼亚核内核可以更有力地复制数字上的视觉误解和油漆型偏差。